Locally bounded global solutions to a chemotaxis consumption model with singular sensitivity and nonlinear diffusion

Publikation: Beitrag in FachzeitschriftArtikelForschungPeer-Review

Autoren

  • J. Lankeit

Organisationseinheiten

Forschungs-netzwerk anzeigen

Details

OriginalspracheEnglisch
Seiten (von - bis)4052-4084
Seitenumfang33
FachzeitschriftJournal of differential equations
Jahrgang262
Ausgabenummer7
PublikationsstatusVeröffentlicht - 2017

Abstract

We show the existence of locally bounded global solutions to the chemotaxis system {u t=∇⋅(D(u)∇u)−∇⋅([formula presented]∇v)in Ω×(0,∞)v t=Δv−uvin Ω×(0,∞)∂ νu=∂ νv=0in ∂Ω×(0,∞)u(⋅,0)=u 0,v(⋅,0)=v 0in Ω in smooth bounded domains Ω⊂R N, N≥2, for D(u)≥δu m−1 with some δ>0, provided that m>1+[formula presented].

ASJC Scopus Sachgebiete

Zitieren

Locally bounded global solutions to a chemotaxis consumption model with singular sensitivity and nonlinear diffusion. / Lankeit, J.
in: Journal of differential equations, Jahrgang 262, Nr. 7, 2017, S. 4052-4084.

Publikation: Beitrag in FachzeitschriftArtikelForschungPeer-Review

Download
@article{b95ada877a9c4ae087e157a806bde940,
title = "Locally bounded global solutions to a chemotaxis consumption model with singular sensitivity and nonlinear diffusion",
abstract = "We show the existence of locally bounded global solutions to the chemotaxis system {u t=∇⋅(D(u)∇u)−∇⋅([formula presented]∇v)in Ω×(0,∞)v t=Δv−uvin Ω×(0,∞)∂ νu=∂ νv=0in ∂Ω×(0,∞)u(⋅,0)=u 0,v(⋅,0)=v 0in Ω in smooth bounded domains Ω⊂R N, N≥2, for D(u)≥δu m−1 with some δ>0, provided that m>1+[formula presented].",
keywords = "Boundedness, Chemotaxis, Global existence, Keller–Segel, Nonlinear diffusion",
author = "J. Lankeit",
note = "Publisher Copyright: {\textcopyright} 2016 Elsevier Inc.",
year = "2017",
doi = "10.1016/j.jde.2016.12.007",
language = "English",
volume = "262",
pages = "4052--4084",
journal = "Journal of differential equations",
issn = "0022-0396",
publisher = "Academic Press Inc.",
number = "7",

}

Download

TY - JOUR

T1 - Locally bounded global solutions to a chemotaxis consumption model with singular sensitivity and nonlinear diffusion

AU - Lankeit, J.

N1 - Publisher Copyright: © 2016 Elsevier Inc.

PY - 2017

Y1 - 2017

N2 - We show the existence of locally bounded global solutions to the chemotaxis system {u t=∇⋅(D(u)∇u)−∇⋅([formula presented]∇v)in Ω×(0,∞)v t=Δv−uvin Ω×(0,∞)∂ νu=∂ νv=0in ∂Ω×(0,∞)u(⋅,0)=u 0,v(⋅,0)=v 0in Ω in smooth bounded domains Ω⊂R N, N≥2, for D(u)≥δu m−1 with some δ>0, provided that m>1+[formula presented].

AB - We show the existence of locally bounded global solutions to the chemotaxis system {u t=∇⋅(D(u)∇u)−∇⋅([formula presented]∇v)in Ω×(0,∞)v t=Δv−uvin Ω×(0,∞)∂ νu=∂ νv=0in ∂Ω×(0,∞)u(⋅,0)=u 0,v(⋅,0)=v 0in Ω in smooth bounded domains Ω⊂R N, N≥2, for D(u)≥δu m−1 with some δ>0, provided that m>1+[formula presented].

KW - Boundedness

KW - Chemotaxis

KW - Global existence

KW - Keller–Segel

KW - Nonlinear diffusion

UR - http://www.scopus.com/inward/record.url?scp=85008225418&partnerID=8YFLogxK

U2 - 10.1016/j.jde.2016.12.007

DO - 10.1016/j.jde.2016.12.007

M3 - Article

VL - 262

SP - 4052

EP - 4084

JO - Journal of differential equations

JF - Journal of differential equations

SN - 0022-0396

IS - 7

ER -