Details
Originalsprache | Englisch |
---|---|
Seiten (von - bis) | 733-763 |
Seitenumfang | 31 |
Fachzeitschrift | New Zealand Journal of Mathematics |
Jahrgang | 52 |
Publikationsstatus | Veröffentlicht - 14 Dez. 2021 |
Extern publiziert | Ja |
Abstract
We prove local injectivity near a boundary point for the geodesic X-ray transform for an asymptotically hyperbolic metric even mod O(ρ5) in dimensions three and higher.
ASJC Scopus Sachgebiete
- Mathematik (insg.)
- Analysis
- Mathematik (insg.)
- Algebra und Zahlentheorie
- Mathematik (insg.)
- Geometrie und Topologie
- Mathematik (insg.)
- Angewandte Mathematik
Zitieren
- Standard
- Harvard
- Apa
- Vancouver
- BibTex
- RIS
in: New Zealand Journal of Mathematics, Jahrgang 52, 14.12.2021, S. 733-763.
Publikation: Beitrag in Fachzeitschrift › Artikel › Forschung › Peer-Review
}
TY - JOUR
T1 - Local X-ray transform on asymptotically hyperbolic manifolds via projective compactification
AU - Eptaminitakis, Nikolas
AU - Graham, C. Robin
N1 - Funding Information: Then (6.24) for k = 1 follows exactly the same steps as for k = 0 from (6.25) onwards, with KE replaced( by W) j KE − ((Wj h)/h)KE: by Lemma 6.7, Wj KE − ((Wj h)/h)KE ∈ C0 Od2 × [0, η0) , it vanishes to infinite order at Gb × [0, η0) and is identically 0 for η = 0. This finishes the proof of the proposition. □ Acknowledgments. Research of N.E. was partially supported by the National Science Foundation under Grant No. DMS-1800453 of Gunther Uhlmann. The authors would like to thank Hart Smith, Gunther Uhlmann, and András Vasy for helpful discussions. This paper is based on Chapter 1 of N.E.’s University of Washington PhD Thesis ([Ept20]).
PY - 2021/12/14
Y1 - 2021/12/14
N2 - We prove local injectivity near a boundary point for the geodesic X-ray transform for an asymptotically hyperbolic metric even mod O(ρ5) in dimensions three and higher.
AB - We prove local injectivity near a boundary point for the geodesic X-ray transform for an asymptotically hyperbolic metric even mod O(ρ5) in dimensions three and higher.
UR - http://www.scopus.com/inward/record.url?scp=85122213306&partnerID=8YFLogxK
U2 - 10.53733/191
DO - 10.53733/191
M3 - Article
AN - SCOPUS:85122213306
VL - 52
SP - 733
EP - 763
JO - New Zealand Journal of Mathematics
JF - New Zealand Journal of Mathematics
ER -