Details
Originalsprache | Englisch |
---|---|
Seiten (von - bis) | 1147-1160 |
Seitenumfang | 14 |
Fachzeitschrift | Calculus of Variations and Partial Differential Equations |
Jahrgang | 54 |
Ausgabenummer | 1 |
Publikationsstatus | Veröffentlicht - 24 Jan. 2015 |
Abstract
The moving boundary problem for the contact line evolution of a droplet is studied. Local existence and uniqueness of classical solutions is established.
ASJC Scopus Sachgebiete
- Mathematik (insg.)
- Analysis
- Mathematik (insg.)
- Angewandte Mathematik
Zitieren
- Standard
- Harvard
- Apa
- Vancouver
- BibTex
- RIS
in: Calculus of Variations and Partial Differential Equations, Jahrgang 54, Nr. 1, 24.01.2015, S. 1147-1160.
Publikation: Beitrag in Fachzeitschrift › Artikel › Forschung › Peer-Review
}
TY - JOUR
T1 - Local well-posedness for a quasi-stationary droplet model
AU - Escher, Joachim
AU - Guidotti, Patrick
PY - 2015/1/24
Y1 - 2015/1/24
N2 - The moving boundary problem for the contact line evolution of a droplet is studied. Local existence and uniqueness of classical solutions is established.
AB - The moving boundary problem for the contact line evolution of a droplet is studied. Local existence and uniqueness of classical solutions is established.
UR - http://www.scopus.com/inward/record.url?scp=84939465556&partnerID=8YFLogxK
U2 - 10.1007/s00526-015-0820-7
DO - 10.1007/s00526-015-0820-7
M3 - Article
AN - SCOPUS:84939465556
VL - 54
SP - 1147
EP - 1160
JO - Calculus of Variations and Partial Differential Equations
JF - Calculus of Variations and Partial Differential Equations
SN - 0944-2669
IS - 1
ER -