Details
Originalsprache | Englisch |
---|---|
Seiten (von - bis) | 1-34 |
Seitenumfang | 34 |
Fachzeitschrift | Algebra and Number Theory |
Jahrgang | 12 |
Ausgabenummer | 1 |
Publikationsstatus | Veröffentlicht - 13 März 2018 |
Abstract
Zitieren
- Standard
- Harvard
- Apa
- Vancouver
- BibTex
- RIS
in: Algebra and Number Theory, Jahrgang 12, Nr. 1, 13.03.2018, S. 1-34.
Publikation: Beitrag in Fachzeitschrift › Artikel › Forschung › Peer-Review
}
TY - JOUR
T1 - Local positivity of linear series on surfaces
AU - Küronya, Alex
AU - Lozovanu, Victor
N1 - Funding information: Alex Küronya was partially supported by the DFG-Forschergruppe 790 “Classification of Algebraic Surfaces and Compact Complex Manifolds”, by the DFG-Graduiertenkolleg 1821 “Cohomological Methods in Geometry”, and by theOrszágos Tudományos Kutatási AlapprogramokOTKA grants 77476 and 81203of the Hungarian Academy of Sciences. Alex Küronya was partially supported by the DFG-Forschergruppe 790 “Classification of Algebraic Surfaces and Compact Complex Manifolds”, by the DFG-Graduiertenkolleg 1821 “Cohomological Methods in Geometry”, and by the OTKA grants 77476 and 81203 of the Hungarian Academy of Sciences.
PY - 2018/3/13
Y1 - 2018/3/13
N2 - We study asymptotic invariants of linear series on surfaces with the help of Newton-Okounkov polygons. Our primary aim is to understand local positivity of line bundles in terms of convex geometry. We work out characterizations of ample and nef line bundles in terms of their Newton-Okounkov bodies, treating the infinitesimal case as well. One of the main results is a description of moving Seshadri constants via infinitesimal Newton-Okounkov polygons. As an illustration of our ideas we reprove results of Ein-Lazarsfeld on Seshadri constants on surfaces.
AB - We study asymptotic invariants of linear series on surfaces with the help of Newton-Okounkov polygons. Our primary aim is to understand local positivity of line bundles in terms of convex geometry. We work out characterizations of ample and nef line bundles in terms of their Newton-Okounkov bodies, treating the infinitesimal case as well. One of the main results is a description of moving Seshadri constants via infinitesimal Newton-Okounkov polygons. As an illustration of our ideas we reprove results of Ein-Lazarsfeld on Seshadri constants on surfaces.
UR - http://www.scopus.com/inward/record.url?scp=85046727030&partnerID=8YFLogxK
U2 - 10.48550/arXiv.1411.6205
DO - 10.48550/arXiv.1411.6205
M3 - Article
AN - SCOPUS:85046727030
VL - 12
SP - 1
EP - 34
JO - Algebra and Number Theory
JF - Algebra and Number Theory
SN - 1937-0652
IS - 1
ER -