Details
Originalsprache | Englisch |
---|---|
Seiten (von - bis) | 179-206 |
Seitenumfang | 28 |
Fachzeitschrift | Journal of Combinatorial Theory. Series A |
Jahrgang | 137 |
Frühes Online-Datum | 10 Sept. 2015 |
Publikationsstatus | Veröffentlicht - Jan. 2016 |
Abstract
The classical Littlewood-Richardson rule is a rule for computing coefficients in many areas, and comes in many guises. In this paper we prove two Littlewood-Richardson rules for symmetric skew quasisymmetric Schur functions that are analogous to the famed version of the classical Littlewood-Richardson rule involving Yamanouchi words. Furthermore, both our rules contain this classical Littlewood-Richardson rule as a special case. We then apply our rules to combinatorially classify symmetric skew quasisymmetric Schur functions. This answers affirmatively a conjecture of Bessenrodt, Luoto and van Willigenburg.
ASJC Scopus Sachgebiete
- Mathematik (insg.)
- Theoretische Informatik
- Mathematik (insg.)
- Diskrete Mathematik und Kombinatorik
- Informatik (insg.)
- Theoretische Informatik und Mathematik
Zitieren
- Standard
- Harvard
- Apa
- Vancouver
- BibTex
- RIS
in: Journal of Combinatorial Theory. Series A, Jahrgang 137, 01.2016, S. 179-206.
Publikation: Beitrag in Fachzeitschrift › Artikel › Forschung › Peer-Review
}
TY - JOUR
T1 - Littlewood-Richardson rules for symmetric skew quasisymmetric Schur functions
AU - Bessenrodt, Christine
AU - Tewari, Vasu
AU - van Willigenburg, Stephanie
N1 - Funding Information: The second and third authors were supported in part by the National Sciences and Engineering Research Council of Canada . The third author was supported in part by the Alexander von Humboldt Foundation .
PY - 2016/1
Y1 - 2016/1
N2 - The classical Littlewood-Richardson rule is a rule for computing coefficients in many areas, and comes in many guises. In this paper we prove two Littlewood-Richardson rules for symmetric skew quasisymmetric Schur functions that are analogous to the famed version of the classical Littlewood-Richardson rule involving Yamanouchi words. Furthermore, both our rules contain this classical Littlewood-Richardson rule as a special case. We then apply our rules to combinatorially classify symmetric skew quasisymmetric Schur functions. This answers affirmatively a conjecture of Bessenrodt, Luoto and van Willigenburg.
AB - The classical Littlewood-Richardson rule is a rule for computing coefficients in many areas, and comes in many guises. In this paper we prove two Littlewood-Richardson rules for symmetric skew quasisymmetric Schur functions that are analogous to the famed version of the classical Littlewood-Richardson rule involving Yamanouchi words. Furthermore, both our rules contain this classical Littlewood-Richardson rule as a special case. We then apply our rules to combinatorially classify symmetric skew quasisymmetric Schur functions. This answers affirmatively a conjecture of Bessenrodt, Luoto and van Willigenburg.
KW - Composition
KW - Littlewood-Richardson rule
KW - Quasisymmetric function
KW - Schur function
KW - Skew Schur function
KW - Symmetric function
KW - Tableaux
UR - http://www.scopus.com/inward/record.url?scp=84941791040&partnerID=8YFLogxK
U2 - 10.1016/j.jcta.2015.08.005
DO - 10.1016/j.jcta.2015.08.005
M3 - Article
AN - SCOPUS:84941791040
VL - 137
SP - 179
EP - 206
JO - Journal of Combinatorial Theory. Series A
JF - Journal of Combinatorial Theory. Series A
SN - 0097-3165
ER -