Lines on Fermat surfaces

Publikation: Beitrag in FachzeitschriftArtikelForschungPeer-Review

Autorschaft

Organisationseinheiten

Externe Organisationen

  • Rikkyo University
  • Kyoto University
  • Leiden University
Forschungs-netzwerk anzeigen

Details

OriginalspracheEnglisch
Seiten (von - bis)1939-1963
Seitenumfang25
FachzeitschriftJournal of number theory
Jahrgang130
Ausgabenummer9
PublikationsstatusVeröffentlicht - Sept. 2010

Abstract

We prove that the Néron-Severi groups of several complex Fermat surfaces are generated by lines. Specifically, we obtain these new results for all degrees up to 100 that are relatively prime to 6. The proof uses reduction modulo a supersingular prime. The techniques are developed in detail. They can be applied to other surfaces and varieties as well.

ASJC Scopus Sachgebiete

Zitieren

Lines on Fermat surfaces. / Schütt, Matthias; Shioda, Tetsuji; van Luijk, Ronald.
in: Journal of number theory, Jahrgang 130, Nr. 9, 09.2010, S. 1939-1963.

Publikation: Beitrag in FachzeitschriftArtikelForschungPeer-Review

Schütt, M, Shioda, T & van Luijk, R 2010, 'Lines on Fermat surfaces', Journal of number theory, Jg. 130, Nr. 9, S. 1939-1963. https://doi.org/10.1016/j.jnt.2010.01.008
Schütt M, Shioda T, van Luijk R. Lines on Fermat surfaces. Journal of number theory. 2010 Sep;130(9):1939-1963. doi: 10.1016/j.jnt.2010.01.008
Schütt, Matthias ; Shioda, Tetsuji ; van Luijk, Ronald. / Lines on Fermat surfaces. in: Journal of number theory. 2010 ; Jahrgang 130, Nr. 9. S. 1939-1963.
Download
@article{9735e290ef2a4431ab35ab4934f11d26,
title = "Lines on Fermat surfaces",
abstract = "We prove that the N{\'e}ron-Severi groups of several complex Fermat surfaces are generated by lines. Specifically, we obtain these new results for all degrees up to 100 that are relatively prime to 6. The proof uses reduction modulo a supersingular prime. The techniques are developed in detail. They can be applied to other surfaces and varieties as well.",
keywords = "Fermat surface, N{\'e}ron-Severi group, Primary, Secondary, Supersingular reduction",
author = "Matthias Sch{\"u}tt and Tetsuji Shioda and {van Luijk}, Ronald",
note = "Funding information: Partial funding from DFG under grant Schu 2266/2-2 and JSPS under Grant-in-Aid for Scientific Research (C) No. 20540051 is gratefully acknowledged. * Corresponding author. E-mail addresses: schuett@math.uni-hannover.de (M. Sch{\"u}tt), shioda@rikkyo.ac.jp (T. Shioda), rvl@math.leidenuniv.nl (R. van Luijk). URLs: http://www.iag.uni-hannover.de/~schuett/ (M. Sch{\"u}tt), http://www.rkmath.rikkyo.ac.jp/math/shioda/ (T. Shioda), http://www.math.leidenuniv.nl/~rvl (R. van Luijk).",
year = "2010",
month = sep,
doi = "10.1016/j.jnt.2010.01.008",
language = "English",
volume = "130",
pages = "1939--1963",
journal = "Journal of number theory",
issn = "0022-314X",
publisher = "Academic Press Inc.",
number = "9",

}

Download

TY - JOUR

T1 - Lines on Fermat surfaces

AU - Schütt, Matthias

AU - Shioda, Tetsuji

AU - van Luijk, Ronald

N1 - Funding information: Partial funding from DFG under grant Schu 2266/2-2 and JSPS under Grant-in-Aid for Scientific Research (C) No. 20540051 is gratefully acknowledged. * Corresponding author. E-mail addresses: schuett@math.uni-hannover.de (M. Schütt), shioda@rikkyo.ac.jp (T. Shioda), rvl@math.leidenuniv.nl (R. van Luijk). URLs: http://www.iag.uni-hannover.de/~schuett/ (M. Schütt), http://www.rkmath.rikkyo.ac.jp/math/shioda/ (T. Shioda), http://www.math.leidenuniv.nl/~rvl (R. van Luijk).

PY - 2010/9

Y1 - 2010/9

N2 - We prove that the Néron-Severi groups of several complex Fermat surfaces are generated by lines. Specifically, we obtain these new results for all degrees up to 100 that are relatively prime to 6. The proof uses reduction modulo a supersingular prime. The techniques are developed in detail. They can be applied to other surfaces and varieties as well.

AB - We prove that the Néron-Severi groups of several complex Fermat surfaces are generated by lines. Specifically, we obtain these new results for all degrees up to 100 that are relatively prime to 6. The proof uses reduction modulo a supersingular prime. The techniques are developed in detail. They can be applied to other surfaces and varieties as well.

KW - Fermat surface

KW - Néron-Severi group

KW - Primary

KW - Secondary

KW - Supersingular reduction

UR - http://www.scopus.com/inward/record.url?scp=77953692452&partnerID=8YFLogxK

UR - https://arxiv.org/abs/0812.2377

U2 - 10.1016/j.jnt.2010.01.008

DO - 10.1016/j.jnt.2010.01.008

M3 - Article

AN - SCOPUS:77953692452

VL - 130

SP - 1939

EP - 1963

JO - Journal of number theory

JF - Journal of number theory

SN - 0022-314X

IS - 9

ER -

Von denselben Autoren