Details
Originalsprache | Englisch |
---|---|
Seiten (von - bis) | 7617-7643 |
Seitenumfang | 27 |
Fachzeitschrift | International Mathematics Research Notices |
Jahrgang | 2020 |
Ausgabenummer | 21 |
Frühes Online-Datum | 14 Sept. 2018 |
Publikationsstatus | Veröffentlicht - 1 Nov. 2020 |
Abstract
We establish an effective version of the André-Oort conjecture for linear subspaces of $Y(1)^n_{\mathbb{C}} \approx \mathbb{A}_{\mathbb{C}}^n$. This gives the first effective nontrivial results of André-Oort type for higher-dimensional varieties in products of modular curves.
ASJC Scopus Sachgebiete
- Mathematik (insg.)
- Allgemeine Mathematik
Zitieren
- Standard
- Harvard
- Apa
- Vancouver
- BibTex
- RIS
in: International Mathematics Research Notices, Jahrgang 2020, Nr. 21, 01.11.2020, S. 7617-7643.
Publikation: Beitrag in Fachzeitschrift › Artikel › Forschung › Peer-Review
}
TY - JOUR
T1 - Linear Equations in Singular Moduli
AU - Bilu, Yuri
AU - Kuhne, Lars
PY - 2020/11/1
Y1 - 2020/11/1
N2 - We establish an effective version of the André-Oort conjecture for linear subspaces of $Y(1)^n_{\mathbb{C}} \approx \mathbb{A}_{\mathbb{C}}^n$. This gives the first effective nontrivial results of André-Oort type for higher-dimensional varieties in products of modular curves.
AB - We establish an effective version of the André-Oort conjecture for linear subspaces of $Y(1)^n_{\mathbb{C}} \approx \mathbb{A}_{\mathbb{C}}^n$. This gives the first effective nontrivial results of André-Oort type for higher-dimensional varieties in products of modular curves.
UR - http://www.scopus.com/inward/record.url?scp=85097449850&partnerID=8YFLogxK
U2 - 10.48550/arXiv.1712.04027
DO - 10.48550/arXiv.1712.04027
M3 - Article
AN - SCOPUS:85097449850
VL - 2020
SP - 7617
EP - 7643
JO - International Mathematics Research Notices
JF - International Mathematics Research Notices
SN - 1073-7928
IS - 21
ER -