Lernfähige Instandhaltung: Zustandsorientierte Instandhaltung durch verteilte Datenhaltung und Künstliche Intelligenz

Publikation: Beitrag in FachzeitschriftArtikelForschungPeer-Review

Autorschaft

  • Sven Heißmeyer
  • Dirk Altmann
  • Ludger Overmeyer

Externe Organisationen

  • Institut für integrierte Produktion Hannover (IPH) gGmbH
Forschungs-netzwerk anzeigen

Details

Titel in ÜbersetzungAdaptive maintenance - Condition-based maintenance by means of distributed data management and artificial intelligence
OriginalspracheDeutsch
Seiten (von - bis)333-338
Seitenumfang6
FachzeitschriftZeitschrift für wirtschaftlichen Fabrikbetrieb (ZWF) (online)
Jahrgang105
Ausgabenummer4
PublikationsstatusVeröffentlicht - Apr. 2010

Abstract

Condition-based maintenance of production equipment offers a better trade-off between availability and maintenance costs than other maintenance strategies. A novel approach for determining and predicting the plant condition is presented. The approach applies methods of artificial intelligence to a distributed database covering the entire life cycle of the equipment. The approach simplifies the introduction of condition-based maintenance by means of machine learning and is especially suited for equipment with unknown fault behaviour.

ASJC Scopus Sachgebiete

Zitieren

Lernfähige Instandhaltung: Zustandsorientierte Instandhaltung durch verteilte Datenhaltung und Künstliche Intelligenz. / Heißmeyer, Sven; Altmann, Dirk; Overmeyer, Ludger.
in: Zeitschrift für wirtschaftlichen Fabrikbetrieb (ZWF) (online), Jahrgang 105, Nr. 4, 04.2010, S. 333-338.

Publikation: Beitrag in FachzeitschriftArtikelForschungPeer-Review

Download
@article{a4038dd555ad44f58869dd422eaca7ae,
title = "Lernf{\"a}hige Instandhaltung: Zustandsorientierte Instandhaltung durch verteilte Datenhaltung und K{\"u}nstliche Intelligenz",
abstract = "Condition-based maintenance of production equipment offers a better trade-off between availability and maintenance costs than other maintenance strategies. A novel approach for determining and predicting the plant condition is presented. The approach applies methods of artificial intelligence to a distributed database covering the entire life cycle of the equipment. The approach simplifies the introduction of condition-based maintenance by means of machine learning and is especially suited for equipment with unknown fault behaviour.",
author = "Sven Hei{\ss}meyer and Dirk Altmann and Ludger Overmeyer",
year = "2010",
month = apr,
doi = "10.3139/104.110294",
language = "Deutsch",
volume = "105",
pages = "333--338",
journal = "Zeitschrift f{\"u}r wirtschaftlichen Fabrikbetrieb (ZWF) (online)",
issn = "0947-0085",
publisher = "de Gruyter",
number = "4",

}

Download

TY - JOUR

T1 - Lernfähige Instandhaltung

T2 - Zustandsorientierte Instandhaltung durch verteilte Datenhaltung und Künstliche Intelligenz

AU - Heißmeyer, Sven

AU - Altmann, Dirk

AU - Overmeyer, Ludger

PY - 2010/4

Y1 - 2010/4

N2 - Condition-based maintenance of production equipment offers a better trade-off between availability and maintenance costs than other maintenance strategies. A novel approach for determining and predicting the plant condition is presented. The approach applies methods of artificial intelligence to a distributed database covering the entire life cycle of the equipment. The approach simplifies the introduction of condition-based maintenance by means of machine learning and is especially suited for equipment with unknown fault behaviour.

AB - Condition-based maintenance of production equipment offers a better trade-off between availability and maintenance costs than other maintenance strategies. A novel approach for determining and predicting the plant condition is presented. The approach applies methods of artificial intelligence to a distributed database covering the entire life cycle of the equipment. The approach simplifies the introduction of condition-based maintenance by means of machine learning and is especially suited for equipment with unknown fault behaviour.

UR - http://www.scopus.com/inward/record.url?scp=77952982727&partnerID=8YFLogxK

U2 - 10.3139/104.110294

DO - 10.3139/104.110294

M3 - Artikel

AN - SCOPUS:77952982727

VL - 105

SP - 333

EP - 338

JO - Zeitschrift für wirtschaftlichen Fabrikbetrieb (ZWF) (online)

JF - Zeitschrift für wirtschaftlichen Fabrikbetrieb (ZWF) (online)

SN - 0947-0085

IS - 4

ER -