Leaf expansion, stomatal conductance, and transpiration of vegetable amaranth (Amaranthus sp.) in response to soil drying

Publikation: Beitrag in FachzeitschriftArtikelForschungPeer-Review

Autorschaft

  • F. Liu
  • H. Stützel
Forschungs-netzwerk anzeigen

Details

OriginalspracheEnglisch
Seiten (von - bis)878-883
Seitenumfang6
FachzeitschriftJournal of the American Society for Horticultural Science
Jahrgang127
Ausgabenummer5
Frühes Online-DatumSept. 2002
PublikationsstatusVeröffentlicht - 2002

Abstract

This study was designed to quantify the responses of leaf expansion, stomatal conductance, and transpiration of four genotypes of vegetable amaranth [Amaranthus tricolor L. (Hin Choi),A. tricolor L. (Co. 2),A. blitum L. (WS80-192), and A. cruentus L. (RRC 1027)] to soil drying. Two greenhouse experiments were conducted during 1999 and 2000. Soil water status was expressed as the fraction of transpirable soil water (FTSW). Leaf expansion rates, stomatal conductances, and transpiration rates of the stressed plants were determined relative to those of nonstressed plants, and expressed as relative leaf expansion (RLE), relative stomatal conductance (RSC), and relative transpiration (RT), respectively. The rate of soil water extraction differed among genotypes, with RRC 1027 depleting soil water fastest and Hin Choi slowest. Whereas in 1999 all genotypes were equally efficient in soil water use, RRC 1027 extracted a greater volume of transpirable soil water than the other genotypes in 2000. The responses of RLE, RSC, and RT to FTSW were well described by linear-plateau models which allowed calculation of soil-water thresholds for leaf expansion (CL), stomatal conductance (CS), and transpiration (CT). Values for CL were higher than for CS and CT. CL was similar for the four genotypes in each year, whereas, CS and CT, differed among genotypes. CS and CT was lowest for Hin Choi and highest for WS80-192. Differences of CL, CS, and CT between the two experiments might have been due to the different soils used in the experiments and the different evaporative demands during the drought cycles. Under drought stress, the reduction of transpiration of vegetable amaranth was due mainly to reduction of stomatal conductance, not to reduction of leaf expansion. The relative reduction of dry weight caused by drought stress was positively correlated with CS or CTacross the four genotypes. Variation in CS and CT among amaranth genotypes revealed different responses to drought stress, which could make them suitable for different drought situations.

ASJC Scopus Sachgebiete

  • Biochemie, Genetik und Molekularbiologie (insg.)
  • Genetik
  • Agrar- und Biowissenschaften (insg.)
  • Gartenbau

Zitieren

Leaf expansion, stomatal conductance, and transpiration of vegetable amaranth (Amaranthus sp.) in response to soil drying. / Liu, F.; Stützel, H.
in: Journal of the American Society for Horticultural Science, Jahrgang 127, Nr. 5, 2002, S. 878-883.

Publikation: Beitrag in FachzeitschriftArtikelForschungPeer-Review

Download
@article{bbc2081a76134682b7249e61c0c7b670,
title = "Leaf expansion, stomatal conductance, and transpiration of vegetable amaranth (Amaranthus sp.) in response to soil drying",
abstract = "This study was designed to quantify the responses of leaf expansion, stomatal conductance, and transpiration of four genotypes of vegetable amaranth [Amaranthus tricolor L. (Hin Choi),A. tricolor L. (Co. 2),A. blitum L. (WS80-192), and A. cruentus L. (RRC 1027)] to soil drying. Two greenhouse experiments were conducted during 1999 and 2000. Soil water status was expressed as the fraction of transpirable soil water (FTSW). Leaf expansion rates, stomatal conductances, and transpiration rates of the stressed plants were determined relative to those of nonstressed plants, and expressed as relative leaf expansion (RLE), relative stomatal conductance (RSC), and relative transpiration (RT), respectively. The rate of soil water extraction differed among genotypes, with RRC 1027 depleting soil water fastest and Hin Choi slowest. Whereas in 1999 all genotypes were equally efficient in soil water use, RRC 1027 extracted a greater volume of transpirable soil water than the other genotypes in 2000. The responses of RLE, RSC, and RT to FTSW were well described by linear-plateau models which allowed calculation of soil-water thresholds for leaf expansion (CL), stomatal conductance (CS), and transpiration (CT). Values for CL were higher than for CS and CT. CL was similar for the four genotypes in each year, whereas, CS and CT, differed among genotypes. CS and CT was lowest for Hin Choi and highest for WS80-192. Differences of CL, CS, and CT between the two experiments might have been due to the different soils used in the experiments and the different evaporative demands during the drought cycles. Under drought stress, the reduction of transpiration of vegetable amaranth was due mainly to reduction of stomatal conductance, not to reduction of leaf expansion. The relative reduction of dry weight caused by drought stress was positively correlated with CS or CTacross the four genotypes. Variation in CS and CT among amaranth genotypes revealed different responses to drought stress, which could make them suitable for different drought situations.",
keywords = "Biomass production, Drought, Leaf area, Light",
author = "F. Liu and H. St{\"u}tzel",
year = "2002",
doi = "10.21273/jashs.127.5.878",
language = "English",
volume = "127",
pages = "878--883",
journal = "Journal of the American Society for Horticultural Science",
issn = "0003-1062",
publisher = "American Society for Horticultural Science",
number = "5",

}

Download

TY - JOUR

T1 - Leaf expansion, stomatal conductance, and transpiration of vegetable amaranth (Amaranthus sp.) in response to soil drying

AU - Liu, F.

AU - Stützel, H.

PY - 2002

Y1 - 2002

N2 - This study was designed to quantify the responses of leaf expansion, stomatal conductance, and transpiration of four genotypes of vegetable amaranth [Amaranthus tricolor L. (Hin Choi),A. tricolor L. (Co. 2),A. blitum L. (WS80-192), and A. cruentus L. (RRC 1027)] to soil drying. Two greenhouse experiments were conducted during 1999 and 2000. Soil water status was expressed as the fraction of transpirable soil water (FTSW). Leaf expansion rates, stomatal conductances, and transpiration rates of the stressed plants were determined relative to those of nonstressed plants, and expressed as relative leaf expansion (RLE), relative stomatal conductance (RSC), and relative transpiration (RT), respectively. The rate of soil water extraction differed among genotypes, with RRC 1027 depleting soil water fastest and Hin Choi slowest. Whereas in 1999 all genotypes were equally efficient in soil water use, RRC 1027 extracted a greater volume of transpirable soil water than the other genotypes in 2000. The responses of RLE, RSC, and RT to FTSW were well described by linear-plateau models which allowed calculation of soil-water thresholds for leaf expansion (CL), stomatal conductance (CS), and transpiration (CT). Values for CL were higher than for CS and CT. CL was similar for the four genotypes in each year, whereas, CS and CT, differed among genotypes. CS and CT was lowest for Hin Choi and highest for WS80-192. Differences of CL, CS, and CT between the two experiments might have been due to the different soils used in the experiments and the different evaporative demands during the drought cycles. Under drought stress, the reduction of transpiration of vegetable amaranth was due mainly to reduction of stomatal conductance, not to reduction of leaf expansion. The relative reduction of dry weight caused by drought stress was positively correlated with CS or CTacross the four genotypes. Variation in CS and CT among amaranth genotypes revealed different responses to drought stress, which could make them suitable for different drought situations.

AB - This study was designed to quantify the responses of leaf expansion, stomatal conductance, and transpiration of four genotypes of vegetable amaranth [Amaranthus tricolor L. (Hin Choi),A. tricolor L. (Co. 2),A. blitum L. (WS80-192), and A. cruentus L. (RRC 1027)] to soil drying. Two greenhouse experiments were conducted during 1999 and 2000. Soil water status was expressed as the fraction of transpirable soil water (FTSW). Leaf expansion rates, stomatal conductances, and transpiration rates of the stressed plants were determined relative to those of nonstressed plants, and expressed as relative leaf expansion (RLE), relative stomatal conductance (RSC), and relative transpiration (RT), respectively. The rate of soil water extraction differed among genotypes, with RRC 1027 depleting soil water fastest and Hin Choi slowest. Whereas in 1999 all genotypes were equally efficient in soil water use, RRC 1027 extracted a greater volume of transpirable soil water than the other genotypes in 2000. The responses of RLE, RSC, and RT to FTSW were well described by linear-plateau models which allowed calculation of soil-water thresholds for leaf expansion (CL), stomatal conductance (CS), and transpiration (CT). Values for CL were higher than for CS and CT. CL was similar for the four genotypes in each year, whereas, CS and CT, differed among genotypes. CS and CT was lowest for Hin Choi and highest for WS80-192. Differences of CL, CS, and CT between the two experiments might have been due to the different soils used in the experiments and the different evaporative demands during the drought cycles. Under drought stress, the reduction of transpiration of vegetable amaranth was due mainly to reduction of stomatal conductance, not to reduction of leaf expansion. The relative reduction of dry weight caused by drought stress was positively correlated with CS or CTacross the four genotypes. Variation in CS and CT among amaranth genotypes revealed different responses to drought stress, which could make them suitable for different drought situations.

KW - Biomass production

KW - Drought

KW - Leaf area

KW - Light

UR - http://www.scopus.com/inward/record.url?scp=0036727003&partnerID=8YFLogxK

U2 - 10.21273/jashs.127.5.878

DO - 10.21273/jashs.127.5.878

M3 - Article

AN - SCOPUS:0036727003

VL - 127

SP - 878

EP - 883

JO - Journal of the American Society for Horticultural Science

JF - Journal of the American Society for Horticultural Science

SN - 0003-1062

IS - 5

ER -