Layoutoptimierung für kleinskalige modulare Förderanlagen

Publikation: Beitrag in FachzeitschriftArtikelForschungPeer-Review

Autoren

  • Paul Aurich
  • Malte Stonis
  • Ludger Overmeyer

Externe Organisationen

  • Institut für integrierte Produktion Hannover (IPH) gGmbH
Forschungs-netzwerk anzeigen

Details

Titel in ÜbersetzungLayout Optimization for Small-scale Modular Conveyor Systems
OriginalspracheDeutsch
Seiten (von - bis)232-236
Seitenumfang5
FachzeitschriftZWF Zeitschrift fuer Wirtschaftlichen Fabrikbetrieb
Jahrgang116
Ausgabenummer4
Frühes Online-Datum21 Apr. 2021
PublikationsstatusVeröffentlicht - 30 Apr. 2021
Extern publiziertJa

Abstract

2021 The machine learning based method for layout optimization of smallscale modular conveyor systems, which is developed within a research project at IPH - Institut für Integrierte Produktion Hannover gGmbH, provides SMEs a decision support, which enables them to execute complex layout planning independently. In addition, the machine learning method is intended to reduce the cost and time required for planning and to improve the quality of the solution compared to manual layout design.

Schlagwörter

    Fördersysteme, Kleinskalige modulare Förderer, Künstliche Intelligenz, Maschinelles Lernen, Materialfluss und Logistik, Operations Research

ASJC Scopus Sachgebiete

Zitieren

Layoutoptimierung für kleinskalige modulare Förderanlagen. / Aurich, Paul; Stonis, Malte; Overmeyer, Ludger.
in: ZWF Zeitschrift fuer Wirtschaftlichen Fabrikbetrieb, Jahrgang 116, Nr. 4, 30.04.2021, S. 232-236.

Publikation: Beitrag in FachzeitschriftArtikelForschungPeer-Review

Aurich, P, Stonis, M & Overmeyer, L 2021, 'Layoutoptimierung für kleinskalige modulare Förderanlagen', ZWF Zeitschrift fuer Wirtschaftlichen Fabrikbetrieb, Jg. 116, Nr. 4, S. 232-236. https://doi.org/10.1515/zwf-2021-0048
Aurich, P., Stonis, M., & Overmeyer, L. (2021). Layoutoptimierung für kleinskalige modulare Förderanlagen. ZWF Zeitschrift fuer Wirtschaftlichen Fabrikbetrieb, 116(4), 232-236. https://doi.org/10.1515/zwf-2021-0048
Aurich P, Stonis M, Overmeyer L. Layoutoptimierung für kleinskalige modulare Förderanlagen. ZWF Zeitschrift fuer Wirtschaftlichen Fabrikbetrieb. 2021 Apr 30;116(4):232-236. Epub 2021 Apr 21. doi: 10.1515/zwf-2021-0048
Aurich, Paul ; Stonis, Malte ; Overmeyer, Ludger. / Layoutoptimierung für kleinskalige modulare Förderanlagen. in: ZWF Zeitschrift fuer Wirtschaftlichen Fabrikbetrieb. 2021 ; Jahrgang 116, Nr. 4. S. 232-236.
Download
@article{81cc25e51d1945d4bd56ab9f2b25b707,
title = "Layoutoptimierung f{\"u}r kleinskalige modulare F{\"o}rderanlagen",
abstract = "2021 The machine learning based method for layout optimization of smallscale modular conveyor systems, which is developed within a research project at IPH - Institut f{\"u}r Integrierte Produktion Hannover gGmbH, provides SMEs a decision support, which enables them to execute complex layout planning independently. In addition, the machine learning method is intended to reduce the cost and time required for planning and to improve the quality of the solution compared to manual layout design.",
keywords = "F{\"o}rdersysteme, Kleinskalige modulare F{\"o}rderer, K{\"u}nstliche Intelligenz, Maschinelles Lernen, Materialfluss und Logistik, Operations Research",
author = "Paul Aurich and Malte Stonis and Ludger Overmeyer",
year = "2021",
month = apr,
day = "30",
doi = "10.1515/zwf-2021-0048",
language = "Deutsch",
volume = "116",
pages = "232--236",
number = "4",

}

Download

TY - JOUR

T1 - Layoutoptimierung für kleinskalige modulare Förderanlagen

AU - Aurich, Paul

AU - Stonis, Malte

AU - Overmeyer, Ludger

PY - 2021/4/30

Y1 - 2021/4/30

N2 - 2021 The machine learning based method for layout optimization of smallscale modular conveyor systems, which is developed within a research project at IPH - Institut für Integrierte Produktion Hannover gGmbH, provides SMEs a decision support, which enables them to execute complex layout planning independently. In addition, the machine learning method is intended to reduce the cost and time required for planning and to improve the quality of the solution compared to manual layout design.

AB - 2021 The machine learning based method for layout optimization of smallscale modular conveyor systems, which is developed within a research project at IPH - Institut für Integrierte Produktion Hannover gGmbH, provides SMEs a decision support, which enables them to execute complex layout planning independently. In addition, the machine learning method is intended to reduce the cost and time required for planning and to improve the quality of the solution compared to manual layout design.

KW - Fördersysteme

KW - Kleinskalige modulare Förderer

KW - Künstliche Intelligenz

KW - Maschinelles Lernen

KW - Materialfluss und Logistik

KW - Operations Research

UR - http://www.scopus.com/inward/record.url?scp=85105141002&partnerID=8YFLogxK

U2 - 10.1515/zwf-2021-0048

DO - 10.1515/zwf-2021-0048

M3 - Artikel

AN - SCOPUS:85105141002

VL - 116

SP - 232

EP - 236

JO - ZWF Zeitschrift fuer Wirtschaftlichen Fabrikbetrieb

JF - ZWF Zeitschrift fuer Wirtschaftlichen Fabrikbetrieb

SN - 0947-0085

IS - 4

ER -