Details
Originalsprache | Englisch |
---|---|
Titel des Sammelwerks | Methods of discrete mathematics. |
Untertitel | Proceedings of the summer school, Braunschweig, Germany, May 23–29, 1999 |
Herausgeber/-innen | Stefan Löwe, Francesco Mazzocca, Nicola Melone, Udo Ott |
Erscheinungsort | Rom |
Herausgeber (Verlag) | Aracne Editrice |
Seiten | 103-143 |
Seitenumfang | 41 |
Publikationsstatus | Veröffentlicht - 1999 |
Publikationsreihe
Name | Quaderni di Mathematica |
---|---|
Herausgeber (Verlag) | Aracne Editrice, Rome; Dipartimento di Matematica, Seconda Universitá di Napoli, Caserta |
Band | 5 |
Abstract
Zitieren
- Standard
- Harvard
- Apa
- Vancouver
- BibTex
- RIS
Methods of discrete mathematics.: Proceedings of the summer school, Braunschweig, Germany, May 23–29, 1999. Hrsg. / Stefan Löwe; Francesco Mazzocca; Nicola Melone; Udo Ott. Rom: Aracne Editrice, 1999. S. 103-143 (Quaderni di Mathematica; Band 5).
Publikation: Beitrag in Buch/Bericht/Sammelwerk/Konferenzband › Aufsatz in Konferenzband › Forschung › Peer-Review
}
TY - GEN
T1 - Lattices and codes
AU - Ebeling, Wolfgang
PY - 1999
Y1 - 1999
N2 - The lectures concern the connection between lattices and codes. The material is an excerpt from the author’s book bearing the same title [Lattices and codes. A course partially based on lectures by F. Hirzebruch, Vieweg (1994); 2nd edition (2002)]. Topics included here are: 1. From codes to lattices; 2. Weight enumerators and theta functions; 3. The MacWilliams identity and Gleason’s theorem; 4. Self-dual codes over 픽p and lattices; 5. Lee weight enumerators and Hilbert modular forms. There are also 22 exercises with complete solutions.
AB - The lectures concern the connection between lattices and codes. The material is an excerpt from the author’s book bearing the same title [Lattices and codes. A course partially based on lectures by F. Hirzebruch, Vieweg (1994); 2nd edition (2002)]. Topics included here are: 1. From codes to lattices; 2. Weight enumerators and theta functions; 3. The MacWilliams identity and Gleason’s theorem; 4. Self-dual codes over 픽p and lattices; 5. Lee weight enumerators and Hilbert modular forms. There are also 22 exercises with complete solutions.
UR - https://zbmath.org/?q=an%3A1005.94024
M3 - Conference contribution
T3 - Quaderni di Mathematica
SP - 103
EP - 143
BT - Methods of discrete mathematics.
A2 - Löwe, Stefan
A2 - Mazzocca, Francesco
A2 - Melone, Nicola
A2 - Ott, Udo
PB - Aracne Editrice
CY - Rom
ER -