Details
Originalsprache | Englisch |
---|---|
Seiten (von - bis) | 4 |
Seitenumfang | 1 |
Fachzeitschrift | Physical Review A - Atomic, Molecular, and Optical Physics |
Jahrgang | 67 |
Ausgabenummer | 4 |
Publikationsstatus | Veröffentlicht - 25 Apr. 2003 |
Abstract
We study the collective Raman cooling of a trapped two-component Fermi gas using quantum master equation in the festina lente regime, where the heating due to photon reabsorption can be neglected. The Monte Carlo simulations show that three-dimensional temperatures of the order of [Formula Presented] can be achieved. We analyze the heating related to background losses, and show that our laser-cooling scheme can maintain the temperature of the gas without significant additional losses.
ASJC Scopus Sachgebiete
- Physik und Astronomie (insg.)
- Atom- und Molekularphysik sowie Optik
Zitieren
- Standard
- Harvard
- Apa
- Vancouver
- BibTex
- RIS
in: Physical Review A - Atomic, Molecular, and Optical Physics, Jahrgang 67, Nr. 4, 25.04.2003, S. 4.
Publikation: Beitrag in Fachzeitschrift › Artikel › Forschung › Peer-Review
}
TY - JOUR
T1 - Laser cooling of a trapped two-component Fermi gas
AU - Idziaszek, Z.
AU - Santos, Luis
AU - Baranov, M.
AU - Lewenstein, Maciej
PY - 2003/4/25
Y1 - 2003/4/25
N2 - We study the collective Raman cooling of a trapped two-component Fermi gas using quantum master equation in the festina lente regime, where the heating due to photon reabsorption can be neglected. The Monte Carlo simulations show that three-dimensional temperatures of the order of [Formula Presented] can be achieved. We analyze the heating related to background losses, and show that our laser-cooling scheme can maintain the temperature of the gas without significant additional losses.
AB - We study the collective Raman cooling of a trapped two-component Fermi gas using quantum master equation in the festina lente regime, where the heating due to photon reabsorption can be neglected. The Monte Carlo simulations show that three-dimensional temperatures of the order of [Formula Presented] can be achieved. We analyze the heating related to background losses, and show that our laser-cooling scheme can maintain the temperature of the gas without significant additional losses.
UR - http://www.scopus.com/inward/record.url?scp=84864402289&partnerID=8YFLogxK
U2 - 10.1103/PhysRevA.67.041403
DO - 10.1103/PhysRevA.67.041403
M3 - Article
AN - SCOPUS:84864402289
VL - 67
SP - 4
JO - Physical Review A - Atomic, Molecular, and Optical Physics
JF - Physical Review A - Atomic, Molecular, and Optical Physics
SN - 1050-2947
IS - 4
ER -