Details
Originalsprache | Englisch |
---|---|
Seiten (von - bis) | 505-510 |
Seitenumfang | 6 |
Fachzeitschrift | International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences - ISPRS Archives |
Jahrgang | 39 |
Publikationsstatus | Veröffentlicht - 2012 |
Veranstaltung | 22nd Congress of the International Society for Photogrammetry and Remote Sensing, ISPRS 2012 - Melbourne, Australien Dauer: 25 Aug. 2012 → 1 Sept. 2012 |
Abstract
The European Space Agency (ESA) is planning a Lunar Lander mission in the 2018 timeframe that will demonstrate precise soft landing at the polar regions of the Moon. To ensure a safe and successful landing a careful risk analysis has to be carried out. This is comprised of identifying favorable target areas and evaluating the surface conditions in these areas. Features like craters, boulders, steep slopes, rough surfaces and shadow areas have to be identified in order to assess the risk associated to a landing site in terms of a successful touchdown and subsequent surface operation of the lander. In addition, global illumination conditions at the landing site have to be simulated and analyzed. The Landing Site Risk Analysis software framework (LandSAfe) is a system for the analysis, selection and certification of safe landing sites on the lunar surface. LandSAfe generates several data products including high resolution digital terrain models (DTMs), hazard maps, illumination maps, temperature maps and surface reflectance maps which assist the user in evaluating potential landing site candidates. This paper presents the LandSAfe system and describes the methods and products of the different modules. For one candidate landing site on the rim of Shackleton crater at the south pole of the Moon a high resolution DTM is showcased.
ASJC Scopus Sachgebiete
- Informatik (insg.)
- Information systems
- Sozialwissenschaften (insg.)
- Geografie, Planung und Entwicklung
Zitieren
- Standard
- Harvard
- Apa
- Vancouver
- BibTex
- RIS
in: International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences - ISPRS Archives, Jahrgang 39, 2012, S. 505-510.
Publikation: Beitrag in Fachzeitschrift › Konferenzaufsatz in Fachzeitschrift › Forschung › Peer-Review
}
TY - JOUR
T1 - Landsafe
T2 - 22nd Congress of the International Society for Photogrammetry and Remote Sensing, ISPRS 2012
AU - Schmidt, R.
AU - Bostelmann, J.
AU - Cornet, Y.
AU - Heipke, C.
AU - Philippe, C.
AU - Poncelet, N.
AU - De Rosa, D.
AU - Vandeloise, Y.
PY - 2012
Y1 - 2012
N2 - The European Space Agency (ESA) is planning a Lunar Lander mission in the 2018 timeframe that will demonstrate precise soft landing at the polar regions of the Moon. To ensure a safe and successful landing a careful risk analysis has to be carried out. This is comprised of identifying favorable target areas and evaluating the surface conditions in these areas. Features like craters, boulders, steep slopes, rough surfaces and shadow areas have to be identified in order to assess the risk associated to a landing site in terms of a successful touchdown and subsequent surface operation of the lander. In addition, global illumination conditions at the landing site have to be simulated and analyzed. The Landing Site Risk Analysis software framework (LandSAfe) is a system for the analysis, selection and certification of safe landing sites on the lunar surface. LandSAfe generates several data products including high resolution digital terrain models (DTMs), hazard maps, illumination maps, temperature maps and surface reflectance maps which assist the user in evaluating potential landing site candidates. This paper presents the LandSAfe system and describes the methods and products of the different modules. For one candidate landing site on the rim of Shackleton crater at the south pole of the Moon a high resolution DTM is showcased.
AB - The European Space Agency (ESA) is planning a Lunar Lander mission in the 2018 timeframe that will demonstrate precise soft landing at the polar regions of the Moon. To ensure a safe and successful landing a careful risk analysis has to be carried out. This is comprised of identifying favorable target areas and evaluating the surface conditions in these areas. Features like craters, boulders, steep slopes, rough surfaces and shadow areas have to be identified in order to assess the risk associated to a landing site in terms of a successful touchdown and subsequent surface operation of the lander. In addition, global illumination conditions at the landing site have to be simulated and analyzed. The Landing Site Risk Analysis software framework (LandSAfe) is a system for the analysis, selection and certification of safe landing sites on the lunar surface. LandSAfe generates several data products including high resolution digital terrain models (DTMs), hazard maps, illumination maps, temperature maps and surface reflectance maps which assist the user in evaluating potential landing site candidates. This paper presents the LandSAfe system and describes the methods and products of the different modules. For one candidate landing site on the rim of Shackleton crater at the south pole of the Moon a high resolution DTM is showcased.
KW - Analysis
KW - Decision support
KW - DEM/DTM
KW - Expert system
KW - Extra-terrestrial
KW - Mapping
KW - Planetary
KW - Visualization
UR - http://www.scopus.com/inward/record.url?scp=84902281386&partnerID=8YFLogxK
M3 - Conference article
AN - SCOPUS:84902281386
VL - 39
SP - 505
EP - 510
JO - International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences - ISPRS Archives
JF - International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences - ISPRS Archives
SN - 1682-1750
Y2 - 25 August 2012 through 1 September 2012
ER -