Details
Originalsprache | Englisch |
---|---|
Aufsatznummer | 113501 |
Fachzeitschrift | Composite structures |
Jahrgang | 265 |
Frühes Online-Datum | 27 Dez. 2020 |
Publikationsstatus | Veröffentlicht - 1 Juni 2021 |
Abstract
The circular economy (CE) proposes a closed-loop supply chain-based production system and reduces the ecological systems' negative impacts. CE proposes a paradigm shift from a linear economy to a circular economy with the principles of 3Rs: reduce, reuse, and recycle. CE applications can be a viable option for the sustainable production of polymeric composite materials by decreasing the cost and improving product lifetimes and mechanical performance. This paper explores Khalasa date palm leaf fiber (KDPLF) as a reinforcement for polymeric composite materials. To this end, it is essential to examine their morphology, material properties, chemical composition, and water uptake. The investigated fiber was obtained from the Qatar University farm. The morphology examination was carried out using scanning electron microscopy. Thermogravimetric analysis has been used to examine the thermal stability of KDPLF. Morphological examination indicates that the lumen size for Khalasa is 32.8 ± 15.9 µm. The SEM morphology of the KDPLF cross-section showed high hemicellulose content. Tensile properties revealed that Khalasa fiber had tensile strength/tensile modulus of 47.99 ± 13.58 MPa and 2.1 ± 0.40 GPa, respectively. The results are also demonstrated that high variation in the mechanical properties and morphology was showed in KDPLF. Water uptake has significant effects on the properties of KDPLF/epoxy composite. Accordingly, as the moisture absorption of KDPLF/epoxy increases, its strength and stiffness decrease. As the moisture absorption of KDPLF/epoxy increases, its toughness increases.
ASJC Scopus Sachgebiete
- Werkstoffwissenschaften (insg.)
- Keramische und Verbundwerkstoffe
- Ingenieurwesen (insg.)
- Tief- und Ingenieurbau
Ziele für nachhaltige Entwicklung
Zitieren
- Standard
- Harvard
- Apa
- Vancouver
- BibTex
- RIS
in: Composite structures, Jahrgang 265, 113501, 01.06.2021.
Publikation: Beitrag in Fachzeitschrift › Artikel › Forschung › Peer-Review
}
TY - JOUR
T1 - Khalasa date palm leaf fiber as a potential reinforcement for polymeric composite materials
AU - Mahdi, Elsadig
AU - Ochoa, Daniel R.Hernández
AU - Vaziri, Ashkan
AU - Dean, Aamir
AU - Kucukvar, Murat
N1 - Funding Information: The authors would like to acknowledge the financial support of the Qatar National Research Fund (a part of the Qatar Foundation) through the National Priorities Research Program NPRP 5-068-2-024.
PY - 2021/6/1
Y1 - 2021/6/1
N2 - The circular economy (CE) proposes a closed-loop supply chain-based production system and reduces the ecological systems' negative impacts. CE proposes a paradigm shift from a linear economy to a circular economy with the principles of 3Rs: reduce, reuse, and recycle. CE applications can be a viable option for the sustainable production of polymeric composite materials by decreasing the cost and improving product lifetimes and mechanical performance. This paper explores Khalasa date palm leaf fiber (KDPLF) as a reinforcement for polymeric composite materials. To this end, it is essential to examine their morphology, material properties, chemical composition, and water uptake. The investigated fiber was obtained from the Qatar University farm. The morphology examination was carried out using scanning electron microscopy. Thermogravimetric analysis has been used to examine the thermal stability of KDPLF. Morphological examination indicates that the lumen size for Khalasa is 32.8 ± 15.9 µm. The SEM morphology of the KDPLF cross-section showed high hemicellulose content. Tensile properties revealed that Khalasa fiber had tensile strength/tensile modulus of 47.99 ± 13.58 MPa and 2.1 ± 0.40 GPa, respectively. The results are also demonstrated that high variation in the mechanical properties and morphology was showed in KDPLF. Water uptake has significant effects on the properties of KDPLF/epoxy composite. Accordingly, as the moisture absorption of KDPLF/epoxy increases, its strength and stiffness decrease. As the moisture absorption of KDPLF/epoxy increases, its toughness increases.
AB - The circular economy (CE) proposes a closed-loop supply chain-based production system and reduces the ecological systems' negative impacts. CE proposes a paradigm shift from a linear economy to a circular economy with the principles of 3Rs: reduce, reuse, and recycle. CE applications can be a viable option for the sustainable production of polymeric composite materials by decreasing the cost and improving product lifetimes and mechanical performance. This paper explores Khalasa date palm leaf fiber (KDPLF) as a reinforcement for polymeric composite materials. To this end, it is essential to examine their morphology, material properties, chemical composition, and water uptake. The investigated fiber was obtained from the Qatar University farm. The morphology examination was carried out using scanning electron microscopy. Thermogravimetric analysis has been used to examine the thermal stability of KDPLF. Morphological examination indicates that the lumen size for Khalasa is 32.8 ± 15.9 µm. The SEM morphology of the KDPLF cross-section showed high hemicellulose content. Tensile properties revealed that Khalasa fiber had tensile strength/tensile modulus of 47.99 ± 13.58 MPa and 2.1 ± 0.40 GPa, respectively. The results are also demonstrated that high variation in the mechanical properties and morphology was showed in KDPLF. Water uptake has significant effects on the properties of KDPLF/epoxy composite. Accordingly, as the moisture absorption of KDPLF/epoxy increases, its strength and stiffness decrease. As the moisture absorption of KDPLF/epoxy increases, its toughness increases.
KW - Circular economy
KW - Date palm fiber
KW - Fiber characterization
KW - Khalasa leaf
KW - Morphology
UR - http://www.scopus.com/inward/record.url?scp=85102400149&partnerID=8YFLogxK
U2 - 10.1016/j.compstruct.2020.113501
DO - 10.1016/j.compstruct.2020.113501
M3 - Article
AN - SCOPUS:85102400149
VL - 265
JO - Composite structures
JF - Composite structures
SN - 0263-8223
M1 - 113501
ER -