Kalman-Filter Based Hybridization of Classic and Cold Atom Interferometry Accelerometers for Future Satellite Gravity Missions

Publikation: Beitrag in Buch/Bericht/Sammelwerk/KonferenzbandBeitrag in Buch/SammelwerkForschungPeer-Review

Autoren

Externe Organisationen

  • DLR-Institut für Satellitengeodäsie und Inertialsensorik
Forschungs-netzwerk anzeigen

Details

OriginalspracheEnglisch
Titel des SammelwerksInternational Association of Geodesy Symposia
Herausgeber/-innenJeffrey T. Freymueller, Laura Sánchez
ErscheinungsortBerlin
Herausgeber (Verlag)Springer Nature
Seiten221-231
Seitenumfang11
ISBN (Print)9783031295065
PublikationsstatusVeröffentlicht - 22 Okt. 2022

Publikationsreihe

NameInternational Association of Geodesy Symposia
Band154
ISSN (Print)0939-9585
ISSN (elektronisch)2197-9359

Abstract

Proof-of-principle demonstrations have been made for cold atom interferometer (CAI) sensors. Using CAI-based accelerometers in the next generation of satellite gravimetry missions can provide long-term stability and precise measurements of the non-gravitational forces acting on the satellites. This would allow a better understanding of climate change processes and geophysical phenomena which require long-term monitoring of mass variations with sufficient spatial and temporal resolution. The proposed accuracy and long-term stability of CAI-based accelerometers appear promising, while there are some major drawbacks in the long dead times and the comparatively small dynamic range of the sensors. One interesting way to handle these limitations is to use a hybridization with a conventional navigation sensor. This study discusses one possible solution to employ measurements of a CAI accelerometer together with a conventional Inertial Measurement Unit (IMU) using a Kalman filter framework.

A hybrid navigation solution of these two sensors for applications on ground has already been demonstrated in simulations. Here, we adapt this method to a space-based GRACE-like gravimetry mission. A simulation is performed, where the sensitivity of the CAI accelerometer is estimated based on state-of-the-art ground sensors and further published space scenarios. Our results show that the Kalman filter framework can be used to combine the measurements of conventional inertial measurement units with the CAI accelerometers measurements in a way to benefit from the high accuracy of the conventional IMU measurements in higher frequencies together with the high stability of CAI measurements in lower frequencies. We will discuss the challenges, potential solutions, and the possible performance limits of the proposed hybrid accelerometry scenario

Schlagwörter

    Atominterferometrie, Hybride Beschleunigungsmesser, Quantumsensoren, Satellitengravimetrie

ASJC Scopus Sachgebiete

Fachgebiet (basierend auf ÖFOS 2012)

Ziele für nachhaltige Entwicklung

Zitieren

Kalman-Filter Based Hybridization of Classic and Cold Atom Interferometry Accelerometers for Future Satellite Gravity Missions. / HosseiniArani, Seyed Alireza; Tennstedt, Benjamin; Schilling, Manuel et al.
International Association of Geodesy Symposia. Hrsg. / Jeffrey T. Freymueller; Laura Sánchez. Berlin: Springer Nature, 2022. S. 221-231 (International Association of Geodesy Symposia; Band 154).

Publikation: Beitrag in Buch/Bericht/Sammelwerk/KonferenzbandBeitrag in Buch/SammelwerkForschungPeer-Review

HosseiniArani, SA, Tennstedt, B, Schilling, M, Knabe, A, Wu, H, Schön, S & Müller, J 2022, Kalman-Filter Based Hybridization of Classic and Cold Atom Interferometry Accelerometers for Future Satellite Gravity Missions. in JT Freymueller & L Sánchez (Hrsg.), International Association of Geodesy Symposia. International Association of Geodesy Symposia, Bd. 154, Springer Nature, Berlin, S. 221-231. https://doi.org/10.1007/1345_2022_172
HosseiniArani, S. A., Tennstedt, B., Schilling, M., Knabe, A., Wu, H., Schön, S., & Müller, J. (2022). Kalman-Filter Based Hybridization of Classic and Cold Atom Interferometry Accelerometers for Future Satellite Gravity Missions. In J. T. Freymueller, & L. Sánchez (Hrsg.), International Association of Geodesy Symposia (S. 221-231). (International Association of Geodesy Symposia; Band 154). Springer Nature. https://doi.org/10.1007/1345_2022_172
HosseiniArani SA, Tennstedt B, Schilling M, Knabe A, Wu H, Schön S et al. Kalman-Filter Based Hybridization of Classic and Cold Atom Interferometry Accelerometers for Future Satellite Gravity Missions. in Freymueller JT, Sánchez L, Hrsg., International Association of Geodesy Symposia. Berlin: Springer Nature. 2022. S. 221-231. (International Association of Geodesy Symposia). doi: 10.1007/1345_2022_172
HosseiniArani, Seyed Alireza ; Tennstedt, Benjamin ; Schilling, Manuel et al. / Kalman-Filter Based Hybridization of Classic and Cold Atom Interferometry Accelerometers for Future Satellite Gravity Missions. International Association of Geodesy Symposia. Hrsg. / Jeffrey T. Freymueller ; Laura Sánchez. Berlin : Springer Nature, 2022. S. 221-231 (International Association of Geodesy Symposia).
Download
@inbook{730fdefbd7dd4ad983531b643fef6077,
title = "Kalman-Filter Based Hybridization of Classic and Cold Atom Interferometry Accelerometers for Future Satellite Gravity Missions",
abstract = "Proof-of-principle demonstrations have been made for cold atom interferometer (CAI) sensors. Using CAI-based accelerometers in the next generation of satellite gravimetry missions can provide long-term stability and precise measurements of the non-gravitational forces acting on the satellites. This would allow a better understanding of climate change processes and geophysical phenomena which require long-term monitoring of mass variations with sufficient spatial and temporal resolution. The proposed accuracy and long-term stability of CAI-based accelerometers appear promising, while there are some major drawbacks in the long dead times and the comparatively small dynamic range of the sensors. One interesting way to handle these limitations is to use a hybridization with a conventional navigation sensor. This study discusses one possible solution to employ measurements of a CAI accelerometer together with a conventional Inertial Measurement Unit (IMU) using a Kalman filter framework.A hybrid navigation solution of these two sensors for applications on ground has already been demonstrated in simulations. Here, we adapt this method to a space-based GRACE-like gravimetry mission. A simulation is performed, where the sensitivity of the CAI accelerometer is estimated based on state-of-the-art ground sensors and further published space scenarios. Our results show that the Kalman filter framework can be used to combine the measurements of conventional inertial measurement units with the CAI accelerometers measurements in a way to benefit from the high accuracy of the conventional IMU measurements in higher frequencies together with the high stability of CAI measurements in lower frequencies. We will discuss the challenges, potential solutions, and the possible performance limits of the proposed hybrid accelerometry scenario",
keywords = "Atominterferometrie, Hybride Beschleunigungsmesser, Quantumsensoren, Satellitengravimetrie, Atom interferometry, Hybrid accelerometer, Quantum sensor, Satellite gravimetry",
author = "HosseiniArani, {Seyed Alireza} and Benjamin Tennstedt and Manuel Schilling and Annike Knabe and Hu Wu and Steffen Sch{\"o}n and J{\"u}rgen M{\"u}ller",
note = "This work is supported by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) Collaborative Research Center 1464 “TerraQ” – 434617780 and Germany{\textquoteright}s Excellence Strategy – EXC-2123 “QuantumFrontiers” – 390837967. B.T. acknowledges support from the Federal Ministry for Economic Affairs and Energy (BMWi), Project 50RK1957. A.K. acknowledges support from “Nieders{\"a}chsisches Vorab” through initial funding of research in the DLR-SI institute.",
year = "2022",
month = oct,
day = "22",
doi = "10.1007/1345_2022_172",
language = "English",
isbn = "9783031295065",
series = "International Association of Geodesy Symposia",
publisher = "Springer Nature",
pages = "221--231",
editor = "Freymueller, {Jeffrey T.} and Laura S{\'a}nchez",
booktitle = "International Association of Geodesy Symposia",
address = "United States",

}

Download

TY - CHAP

T1 - Kalman-Filter Based Hybridization of Classic and Cold Atom Interferometry Accelerometers for Future Satellite Gravity Missions

AU - HosseiniArani, Seyed Alireza

AU - Tennstedt, Benjamin

AU - Schilling, Manuel

AU - Knabe, Annike

AU - Wu, Hu

AU - Schön, Steffen

AU - Müller, Jürgen

N1 - This work is supported by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) Collaborative Research Center 1464 “TerraQ” – 434617780 and Germany’s Excellence Strategy – EXC-2123 “QuantumFrontiers” – 390837967. B.T. acknowledges support from the Federal Ministry for Economic Affairs and Energy (BMWi), Project 50RK1957. A.K. acknowledges support from “Niedersächsisches Vorab” through initial funding of research in the DLR-SI institute.

PY - 2022/10/22

Y1 - 2022/10/22

N2 - Proof-of-principle demonstrations have been made for cold atom interferometer (CAI) sensors. Using CAI-based accelerometers in the next generation of satellite gravimetry missions can provide long-term stability and precise measurements of the non-gravitational forces acting on the satellites. This would allow a better understanding of climate change processes and geophysical phenomena which require long-term monitoring of mass variations with sufficient spatial and temporal resolution. The proposed accuracy and long-term stability of CAI-based accelerometers appear promising, while there are some major drawbacks in the long dead times and the comparatively small dynamic range of the sensors. One interesting way to handle these limitations is to use a hybridization with a conventional navigation sensor. This study discusses one possible solution to employ measurements of a CAI accelerometer together with a conventional Inertial Measurement Unit (IMU) using a Kalman filter framework.A hybrid navigation solution of these two sensors for applications on ground has already been demonstrated in simulations. Here, we adapt this method to a space-based GRACE-like gravimetry mission. A simulation is performed, where the sensitivity of the CAI accelerometer is estimated based on state-of-the-art ground sensors and further published space scenarios. Our results show that the Kalman filter framework can be used to combine the measurements of conventional inertial measurement units with the CAI accelerometers measurements in a way to benefit from the high accuracy of the conventional IMU measurements in higher frequencies together with the high stability of CAI measurements in lower frequencies. We will discuss the challenges, potential solutions, and the possible performance limits of the proposed hybrid accelerometry scenario

AB - Proof-of-principle demonstrations have been made for cold atom interferometer (CAI) sensors. Using CAI-based accelerometers in the next generation of satellite gravimetry missions can provide long-term stability and precise measurements of the non-gravitational forces acting on the satellites. This would allow a better understanding of climate change processes and geophysical phenomena which require long-term monitoring of mass variations with sufficient spatial and temporal resolution. The proposed accuracy and long-term stability of CAI-based accelerometers appear promising, while there are some major drawbacks in the long dead times and the comparatively small dynamic range of the sensors. One interesting way to handle these limitations is to use a hybridization with a conventional navigation sensor. This study discusses one possible solution to employ measurements of a CAI accelerometer together with a conventional Inertial Measurement Unit (IMU) using a Kalman filter framework.A hybrid navigation solution of these two sensors for applications on ground has already been demonstrated in simulations. Here, we adapt this method to a space-based GRACE-like gravimetry mission. A simulation is performed, where the sensitivity of the CAI accelerometer is estimated based on state-of-the-art ground sensors and further published space scenarios. Our results show that the Kalman filter framework can be used to combine the measurements of conventional inertial measurement units with the CAI accelerometers measurements in a way to benefit from the high accuracy of the conventional IMU measurements in higher frequencies together with the high stability of CAI measurements in lower frequencies. We will discuss the challenges, potential solutions, and the possible performance limits of the proposed hybrid accelerometry scenario

KW - Atominterferometrie

KW - Hybride Beschleunigungsmesser

KW - Quantumsensoren

KW - Satellitengravimetrie

KW - Atom interferometry

KW - Hybrid accelerometer

KW - Quantum sensor

KW - Satellite gravimetry

UR - http://www.scopus.com/inward/record.url?scp=85172711109&partnerID=8YFLogxK

U2 - 10.1007/1345_2022_172

DO - 10.1007/1345_2022_172

M3 - Contribution to book/anthology

SN - 9783031295065

T3 - International Association of Geodesy Symposia

SP - 221

EP - 231

BT - International Association of Geodesy Symposia

A2 - Freymueller, Jeffrey T.

A2 - Sánchez, Laura

PB - Springer Nature

CY - Berlin

ER -

Von denselben Autoren