Kähler structures on spin 6-manifolds

Publikation: Beitrag in FachzeitschriftArtikelForschungPeer-Review

Autoren

  • Stefan Schreieder
  • Luca Tasin

Externe Organisationen

  • Ludwig-Maximilians-Universität München (LMU)
  • Rheinische Friedrich-Wilhelms-Universität Bonn
Forschungs-netzwerk anzeigen

Details

OriginalspracheEnglisch
Seiten (von - bis)397-419
Seitenumfang23
FachzeitschriftMathematische Annalen
Jahrgang373
Ausgabenummer1-2
PublikationsstatusVeröffentlicht - 8 Feb. 2019
Extern publiziertJa

Abstract

We show that many spin 6-manifolds have the homotopy type but not the homeomorphism type of a Kähler manifold. Moreover, for given Betti numbers, there are only finitely many deformation types and hence topological types of smooth complex projective spin threefolds of general type. Finally, on a fixed spin 6-manifold, the Chern numbers take on only finitely many values on all possible Kähler structures.

ASJC Scopus Sachgebiete

Zitieren

Kähler structures on spin 6-manifolds. / Schreieder, Stefan; Tasin, Luca.
in: Mathematische Annalen, Jahrgang 373, Nr. 1-2, 08.02.2019, S. 397-419.

Publikation: Beitrag in FachzeitschriftArtikelForschungPeer-Review

Schreieder, S & Tasin, L 2019, 'Kähler structures on spin 6-manifolds', Mathematische Annalen, Jg. 373, Nr. 1-2, S. 397-419. https://doi.org/10.1007/s00208-017-1615-2
Schreieder S, Tasin L. Kähler structures on spin 6-manifolds. Mathematische Annalen. 2019 Feb 8;373(1-2):397-419. doi: 10.1007/s00208-017-1615-2
Schreieder, Stefan ; Tasin, Luca. / Kähler structures on spin 6-manifolds. in: Mathematische Annalen. 2019 ; Jahrgang 373, Nr. 1-2. S. 397-419.
Download
@article{4205d23dcca34bfbb70661c6335beae5,
title = "K{\"a}hler structures on spin 6-manifolds",
abstract = "We show that many spin 6-manifolds have the homotopy type but not the homeomorphism type of a K{\"a}hler manifold. Moreover, for given Betti numbers, there are only finitely many deformation types and hence topological types of smooth complex projective spin threefolds of general type. Finally, on a fixed spin 6-manifold, the Chern numbers take on only finitely many values on all possible K{\"a}hler structures.",
keywords = "Topology of algebraic varieties, K{\"a}hler manifolds, spin manifolds, Chern numbers, minimal model program",
author = "Stefan Schreieder and Luca Tasin",
note = "Funding information: The first author is member of the SFB/TR 45. During parts of this project, the second author was supported by the DFG Emmy Noether-Nachwuchsgruppe “Gute Strukturen in der h{\"o}herdimen-sionalen birationalen Geometrie” and thereby also member of the SFB/TR 45. We thank D. Kotschick for detailed comments and P. Cascini, M. Land, E. Sernesi, R. Svaldi and B. Totaro for conversations.",
year = "2019",
month = feb,
day = "8",
doi = "10.1007/s00208-017-1615-2",
language = "English",
volume = "373",
pages = "397--419",
journal = "Mathematische Annalen",
issn = "0025-5831",
publisher = "Springer New York",
number = "1-2",

}

Download

TY - JOUR

T1 - Kähler structures on spin 6-manifolds

AU - Schreieder, Stefan

AU - Tasin, Luca

N1 - Funding information: The first author is member of the SFB/TR 45. During parts of this project, the second author was supported by the DFG Emmy Noether-Nachwuchsgruppe “Gute Strukturen in der höherdimen-sionalen birationalen Geometrie” and thereby also member of the SFB/TR 45. We thank D. Kotschick for detailed comments and P. Cascini, M. Land, E. Sernesi, R. Svaldi and B. Totaro for conversations.

PY - 2019/2/8

Y1 - 2019/2/8

N2 - We show that many spin 6-manifolds have the homotopy type but not the homeomorphism type of a Kähler manifold. Moreover, for given Betti numbers, there are only finitely many deformation types and hence topological types of smooth complex projective spin threefolds of general type. Finally, on a fixed spin 6-manifold, the Chern numbers take on only finitely many values on all possible Kähler structures.

AB - We show that many spin 6-manifolds have the homotopy type but not the homeomorphism type of a Kähler manifold. Moreover, for given Betti numbers, there are only finitely many deformation types and hence topological types of smooth complex projective spin threefolds of general type. Finally, on a fixed spin 6-manifold, the Chern numbers take on only finitely many values on all possible Kähler structures.

KW - Topology of algebraic varieties

KW - Kähler manifolds

KW - spin manifolds

KW - Chern numbers

KW - minimal model program

UR - http://www.scopus.com/inward/record.url?scp=85033445188&partnerID=8YFLogxK

U2 - 10.1007/s00208-017-1615-2

DO - 10.1007/s00208-017-1615-2

M3 - Article

AN - SCOPUS:85033445188

VL - 373

SP - 397

EP - 419

JO - Mathematische Annalen

JF - Mathematische Annalen

SN - 0025-5831

IS - 1-2

ER -