Details
Originalsprache | Englisch |
---|---|
Seiten (von - bis) | 397-419 |
Seitenumfang | 23 |
Fachzeitschrift | Mathematische Annalen |
Jahrgang | 373 |
Ausgabenummer | 1-2 |
Publikationsstatus | Veröffentlicht - 8 Feb. 2019 |
Extern publiziert | Ja |
Abstract
ASJC Scopus Sachgebiete
- Mathematik (insg.)
- Allgemeine Mathematik
Zitieren
- Standard
- Harvard
- Apa
- Vancouver
- BibTex
- RIS
in: Mathematische Annalen, Jahrgang 373, Nr. 1-2, 08.02.2019, S. 397-419.
Publikation: Beitrag in Fachzeitschrift › Artikel › Forschung › Peer-Review
}
TY - JOUR
T1 - Kähler structures on spin 6-manifolds
AU - Schreieder, Stefan
AU - Tasin, Luca
N1 - Funding information: The first author is member of the SFB/TR 45. During parts of this project, the second author was supported by the DFG Emmy Noether-Nachwuchsgruppe “Gute Strukturen in der höherdimen-sionalen birationalen Geometrie” and thereby also member of the SFB/TR 45. We thank D. Kotschick for detailed comments and P. Cascini, M. Land, E. Sernesi, R. Svaldi and B. Totaro for conversations.
PY - 2019/2/8
Y1 - 2019/2/8
N2 - We show that many spin 6-manifolds have the homotopy type but not the homeomorphism type of a Kähler manifold. Moreover, for given Betti numbers, there are only finitely many deformation types and hence topological types of smooth complex projective spin threefolds of general type. Finally, on a fixed spin 6-manifold, the Chern numbers take on only finitely many values on all possible Kähler structures.
AB - We show that many spin 6-manifolds have the homotopy type but not the homeomorphism type of a Kähler manifold. Moreover, for given Betti numbers, there are only finitely many deformation types and hence topological types of smooth complex projective spin threefolds of general type. Finally, on a fixed spin 6-manifold, the Chern numbers take on only finitely many values on all possible Kähler structures.
KW - Topology of algebraic varieties
KW - Kähler manifolds
KW - spin manifolds
KW - Chern numbers
KW - minimal model program
UR - http://www.scopus.com/inward/record.url?scp=85033445188&partnerID=8YFLogxK
U2 - 10.1007/s00208-017-1615-2
DO - 10.1007/s00208-017-1615-2
M3 - Article
AN - SCOPUS:85033445188
VL - 373
SP - 397
EP - 419
JO - Mathematische Annalen
JF - Mathematische Annalen
SN - 0025-5831
IS - 1-2
ER -