Details
Originalsprache | Englisch |
---|---|
Seiten (von - bis) | 1113-1120 |
Seitenumfang | 8 |
Fachzeitschrift | International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences - ISPRS Archives |
Jahrgang | 42 |
Ausgabenummer | 2/W13 |
Frühes Online-Datum | 5 Juni 2019 |
Publikationsstatus | Veröffentlicht - 2019 |
Veranstaltung | 4th ISPRS Geospatial Week 2019 - Enschede, Niederlande Dauer: 10 Juni 2019 → 14 Juni 2019 |
Abstract
National mapping agencies (NMAs) have to acquire nation-wide Digital Terrain Models on a regular basis as part of their obligations to provide up-to-date data. Point clouds from Airborne Laser Scanning (ALS) are an important data source for this task; recently, NMAs also started deriving Dense Image Matching (DIM) point clouds from aerial images. As a result, NMAs have both point cloud data sources available, which they can exploit for their purposes. In this study, we investigate the potential of transfer learning from ALS to DIM data, so the time consuming step of data labelling can be reduced. Due to their specific individual measurement techniques, both point clouds have various distinct properties such as RGB or intensity values, which are often exploited for classification of either ALS or DIM point clouds. However, those features also hinder transfer learning between these two point cloud types, since they do not exist in the other point cloud type. As the mere 3D point is available in both point cloud types, we focus on transfer learning from an ALS to a DIM point cloud using exclusively the point coordinates. We are tackling the issue of different point densities by rasterizing the point cloud into a 2D grid and take important height features as input for classification. We train an encoder-decoder convolutional neural network with labelled ALS data as a baseline and then fine-tune this baseline with an increasing amount of labelled DIM data. We also train the same network exclusively on all available DIM data as reference to compare our results. We show that only 10% of labelled DIM data increase the classification results notably, which is especially relevant for practical applications.
ASJC Scopus Sachgebiete
- Informatik (insg.)
- Information systems
- Sozialwissenschaften (insg.)
- Geografie, Planung und Entwicklung
Zitieren
- Standard
- Harvard
- Apa
- Vancouver
- BibTex
- RIS
in: International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences - ISPRS Archives, Jahrgang 42, Nr. 2/W13, 2019, S. 1113-1120.
Publikation: Beitrag in Fachzeitschrift › Konferenzaufsatz in Fachzeitschrift › Forschung › Peer-Review
}
TY - JOUR
T1 - Joint classification of ALS and DIM point clouds
AU - Politz, Florian
AU - Sester, Monika
PY - 2019
Y1 - 2019
N2 - National mapping agencies (NMAs) have to acquire nation-wide Digital Terrain Models on a regular basis as part of their obligations to provide up-to-date data. Point clouds from Airborne Laser Scanning (ALS) are an important data source for this task; recently, NMAs also started deriving Dense Image Matching (DIM) point clouds from aerial images. As a result, NMAs have both point cloud data sources available, which they can exploit for their purposes. In this study, we investigate the potential of transfer learning from ALS to DIM data, so the time consuming step of data labelling can be reduced. Due to their specific individual measurement techniques, both point clouds have various distinct properties such as RGB or intensity values, which are often exploited for classification of either ALS or DIM point clouds. However, those features also hinder transfer learning between these two point cloud types, since they do not exist in the other point cloud type. As the mere 3D point is available in both point cloud types, we focus on transfer learning from an ALS to a DIM point cloud using exclusively the point coordinates. We are tackling the issue of different point densities by rasterizing the point cloud into a 2D grid and take important height features as input for classification. We train an encoder-decoder convolutional neural network with labelled ALS data as a baseline and then fine-tune this baseline with an increasing amount of labelled DIM data. We also train the same network exclusively on all available DIM data as reference to compare our results. We show that only 10% of labelled DIM data increase the classification results notably, which is especially relevant for practical applications.
AB - National mapping agencies (NMAs) have to acquire nation-wide Digital Terrain Models on a regular basis as part of their obligations to provide up-to-date data. Point clouds from Airborne Laser Scanning (ALS) are an important data source for this task; recently, NMAs also started deriving Dense Image Matching (DIM) point clouds from aerial images. As a result, NMAs have both point cloud data sources available, which they can exploit for their purposes. In this study, we investigate the potential of transfer learning from ALS to DIM data, so the time consuming step of data labelling can be reduced. Due to their specific individual measurement techniques, both point clouds have various distinct properties such as RGB or intensity values, which are often exploited for classification of either ALS or DIM point clouds. However, those features also hinder transfer learning between these two point cloud types, since they do not exist in the other point cloud type. As the mere 3D point is available in both point cloud types, we focus on transfer learning from an ALS to a DIM point cloud using exclusively the point coordinates. We are tackling the issue of different point densities by rasterizing the point cloud into a 2D grid and take important height features as input for classification. We train an encoder-decoder convolutional neural network with labelled ALS data as a baseline and then fine-tune this baseline with an increasing amount of labelled DIM data. We also train the same network exclusively on all available DIM data as reference to compare our results. We show that only 10% of labelled DIM data increase the classification results notably, which is especially relevant for practical applications.
KW - Airborne Laser Scanning
KW - Dense Image Matching
KW - encoder-decoder Network
KW - point cloud
KW - transfer learning
UR - http://www.scopus.com/inward/record.url?scp=85067467589&partnerID=8YFLogxK
U2 - 10.5194/isprs-archives-XLII-2-W13-1113-2019
DO - 10.5194/isprs-archives-XLII-2-W13-1113-2019
M3 - Conference article
AN - SCOPUS:85067467589
VL - 42
SP - 1113
EP - 1120
JO - International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences - ISPRS Archives
JF - International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences - ISPRS Archives
SN - 1682-1750
IS - 2/W13
T2 - 4th ISPRS Geospatial Week 2019
Y2 - 10 June 2019 through 14 June 2019
ER -