Joining zone shape optimisation for hybrid components made of aluminium-steel by geometrically adapted joining surfaces in the friction welding process

Publikation: Beitrag in Buch/Bericht/Sammelwerk/KonferenzbandAufsatz in KonferenzbandForschungPeer-Review

Autoren

  • Bernd-Arno Behrens
  • Aleksandr Chugreev
  • M. Selinski
  • Tim Matthias
Forschungs-netzwerk anzeigen

Details

OriginalspracheEnglisch
Titel des SammelwerksProceedings of the 22nd International ESAFORM Conference on Material Forming
UntertitelESAFORM 2019
Herausgeber/-innenPedro Arrazola, Eneko Saenz de Argandona, Nagore Otegi, Joseba Mendiguren, Mikel Saez de Buruaga, Aitor Madariaga, Lander Galdos
Seitenumfang7
ISBN (elektronisch)9780735418479
PublikationsstatusVeröffentlicht - 2 Juli 2019
Veranstaltung22nd International ESAFORM Conference on Material Forming, ESAFORM 2019 - Vitoria-Gasteiz, Spanien
Dauer: 8 Mai 201910 Mai 2019

Publikationsreihe

NameAIP Conference Proceedings
Nummer1
Band2113
ISSN (Print)0094-243X
ISSN (elektronisch)1551-7616

Abstract

In the Tailored Forming process chain, serially arranged aluminium-steel semi-finished products, joined by friction welding, are formed into hybrid shafts by a forward extrusion process. In the extrusion of serially arranged hybrid semi-finished products, it is crucial that the yield stress differences between the two materials are as small as possible. If the yield stress difference between the material components is too high, the local deformation is not sufficient and the different materials flow successively into the conical taper area with only a parallel displacement of the interface. In the preliminary work of the Collaborative Research Centre (CRC) 1153, the yield stress difference between the steel and aluminium alloy could not be compensated despite a developed inductive heating strategy, whereby the previously numerically determined optimised joint zone shape could not be achieved. In addition to the adapted heating strategy, the geometry of the joining zone can also be influenced by geometrically adapted joining surfaces in the friction welding process. In the context of this technical contribution, an individual adaptation of the joining zone geometry of the semi-finished products before friction welding is presented, whereby the numerically determined joining zone geometry can be achieved. With the conical welding surface geometries, an increase in bond strength of approx. 18 % was reached in contrast to plane surfaces. In addition to an extension of the joining zone surface, the relative velocity in the sample centre could also be increased, which has shown a positive effect on the bond strength.

ASJC Scopus Sachgebiete

Zitieren

Joining zone shape optimisation for hybrid components made of aluminium-steel by geometrically adapted joining surfaces in the friction welding process. / Behrens, Bernd-Arno; Chugreev, Aleksandr; Selinski, M. et al.
Proceedings of the 22nd International ESAFORM Conference on Material Forming: ESAFORM 2019. Hrsg. / Pedro Arrazola; Eneko Saenz de Argandona; Nagore Otegi; Joseba Mendiguren; Mikel Saez de Buruaga; Aitor Madariaga; Lander Galdos. 2019. 040027 (AIP Conference Proceedings; Band 2113, Nr. 1).

Publikation: Beitrag in Buch/Bericht/Sammelwerk/KonferenzbandAufsatz in KonferenzbandForschungPeer-Review

Behrens, B-A, Chugreev, A, Selinski, M & Matthias, T 2019, Joining zone shape optimisation for hybrid components made of aluminium-steel by geometrically adapted joining surfaces in the friction welding process. in P Arrazola, E Saenz de Argandona, N Otegi, J Mendiguren, M Saez de Buruaga, A Madariaga & L Galdos (Hrsg.), Proceedings of the 22nd International ESAFORM Conference on Material Forming: ESAFORM 2019., 040027, AIP Conference Proceedings, Nr. 1, Bd. 2113, 22nd International ESAFORM Conference on Material Forming, ESAFORM 2019, Vitoria-Gasteiz, Spanien, 8 Mai 2019. https://doi.org/10.1063/1.5112561
Behrens, B.-A., Chugreev, A., Selinski, M., & Matthias, T. (2019). Joining zone shape optimisation for hybrid components made of aluminium-steel by geometrically adapted joining surfaces in the friction welding process. In P. Arrazola, E. Saenz de Argandona, N. Otegi, J. Mendiguren, M. Saez de Buruaga, A. Madariaga, & L. Galdos (Hrsg.), Proceedings of the 22nd International ESAFORM Conference on Material Forming: ESAFORM 2019 Artikel 040027 (AIP Conference Proceedings; Band 2113, Nr. 1). https://doi.org/10.1063/1.5112561
Behrens BA, Chugreev A, Selinski M, Matthias T. Joining zone shape optimisation for hybrid components made of aluminium-steel by geometrically adapted joining surfaces in the friction welding process. in Arrazola P, Saenz de Argandona E, Otegi N, Mendiguren J, Saez de Buruaga M, Madariaga A, Galdos L, Hrsg., Proceedings of the 22nd International ESAFORM Conference on Material Forming: ESAFORM 2019. 2019. 040027. (AIP Conference Proceedings; 1). doi: 10.1063/1.5112561
Behrens, Bernd-Arno ; Chugreev, Aleksandr ; Selinski, M. et al. / Joining zone shape optimisation for hybrid components made of aluminium-steel by geometrically adapted joining surfaces in the friction welding process. Proceedings of the 22nd International ESAFORM Conference on Material Forming: ESAFORM 2019. Hrsg. / Pedro Arrazola ; Eneko Saenz de Argandona ; Nagore Otegi ; Joseba Mendiguren ; Mikel Saez de Buruaga ; Aitor Madariaga ; Lander Galdos. 2019. (AIP Conference Proceedings; 1).
Download
@inproceedings{2d1de5de7efe4f6f99b3ebeb238a07bd,
title = "Joining zone shape optimisation for hybrid components made of aluminium-steel by geometrically adapted joining surfaces in the friction welding process",
abstract = "In the Tailored Forming process chain, serially arranged aluminium-steel semi-finished products, joined by friction welding, are formed into hybrid shafts by a forward extrusion process. In the extrusion of serially arranged hybrid semi-finished products, it is crucial that the yield stress differences between the two materials are as small as possible. If the yield stress difference between the material components is too high, the local deformation is not sufficient and the different materials flow successively into the conical taper area with only a parallel displacement of the interface. In the preliminary work of the Collaborative Research Centre (CRC) 1153, the yield stress difference between the steel and aluminium alloy could not be compensated despite a developed inductive heating strategy, whereby the previously numerically determined optimised joint zone shape could not be achieved. In addition to the adapted heating strategy, the geometry of the joining zone can also be influenced by geometrically adapted joining surfaces in the friction welding process. In the context of this technical contribution, an individual adaptation of the joining zone geometry of the semi-finished products before friction welding is presented, whereby the numerically determined joining zone geometry can be achieved. With the conical welding surface geometries, an increase in bond strength of approx. 18 % was reached in contrast to plane surfaces. In addition to an extension of the joining zone surface, the relative velocity in the sample centre could also be increased, which has shown a positive effect on the bond strength.",
author = "Bernd-Arno Behrens and Aleksandr Chugreev and M. Selinski and Tim Matthias",
note = "Funding information: The results presented in this paper were obtained within the Collaborative Research Centre 1153 “Process chain to produce hybrid high performance components by Tailored Forming” in the subprojects C01 funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) - 252662854. The authors thank the German Research Foundation (DFG) for their financial support of this project. The friction welding tests were carried out in cooperation with subproject B03.; 22nd International ESAFORM Conference on Material Forming, ESAFORM 2019 ; Conference date: 08-05-2019 Through 10-05-2019",
year = "2019",
month = jul,
day = "2",
doi = "10.1063/1.5112561",
language = "English",
series = "AIP Conference Proceedings",
number = "1",
editor = "Pedro Arrazola and {Saenz de Argandona}, Eneko and Nagore Otegi and Joseba Mendiguren and {Saez de Buruaga}, Mikel and Aitor Madariaga and Lander Galdos",
booktitle = "Proceedings of the 22nd International ESAFORM Conference on Material Forming",

}

Download

TY - GEN

T1 - Joining zone shape optimisation for hybrid components made of aluminium-steel by geometrically adapted joining surfaces in the friction welding process

AU - Behrens, Bernd-Arno

AU - Chugreev, Aleksandr

AU - Selinski, M.

AU - Matthias, Tim

N1 - Funding information: The results presented in this paper were obtained within the Collaborative Research Centre 1153 “Process chain to produce hybrid high performance components by Tailored Forming” in the subprojects C01 funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) - 252662854. The authors thank the German Research Foundation (DFG) for their financial support of this project. The friction welding tests were carried out in cooperation with subproject B03.

PY - 2019/7/2

Y1 - 2019/7/2

N2 - In the Tailored Forming process chain, serially arranged aluminium-steel semi-finished products, joined by friction welding, are formed into hybrid shafts by a forward extrusion process. In the extrusion of serially arranged hybrid semi-finished products, it is crucial that the yield stress differences between the two materials are as small as possible. If the yield stress difference between the material components is too high, the local deformation is not sufficient and the different materials flow successively into the conical taper area with only a parallel displacement of the interface. In the preliminary work of the Collaborative Research Centre (CRC) 1153, the yield stress difference between the steel and aluminium alloy could not be compensated despite a developed inductive heating strategy, whereby the previously numerically determined optimised joint zone shape could not be achieved. In addition to the adapted heating strategy, the geometry of the joining zone can also be influenced by geometrically adapted joining surfaces in the friction welding process. In the context of this technical contribution, an individual adaptation of the joining zone geometry of the semi-finished products before friction welding is presented, whereby the numerically determined joining zone geometry can be achieved. With the conical welding surface geometries, an increase in bond strength of approx. 18 % was reached in contrast to plane surfaces. In addition to an extension of the joining zone surface, the relative velocity in the sample centre could also be increased, which has shown a positive effect on the bond strength.

AB - In the Tailored Forming process chain, serially arranged aluminium-steel semi-finished products, joined by friction welding, are formed into hybrid shafts by a forward extrusion process. In the extrusion of serially arranged hybrid semi-finished products, it is crucial that the yield stress differences between the two materials are as small as possible. If the yield stress difference between the material components is too high, the local deformation is not sufficient and the different materials flow successively into the conical taper area with only a parallel displacement of the interface. In the preliminary work of the Collaborative Research Centre (CRC) 1153, the yield stress difference between the steel and aluminium alloy could not be compensated despite a developed inductive heating strategy, whereby the previously numerically determined optimised joint zone shape could not be achieved. In addition to the adapted heating strategy, the geometry of the joining zone can also be influenced by geometrically adapted joining surfaces in the friction welding process. In the context of this technical contribution, an individual adaptation of the joining zone geometry of the semi-finished products before friction welding is presented, whereby the numerically determined joining zone geometry can be achieved. With the conical welding surface geometries, an increase in bond strength of approx. 18 % was reached in contrast to plane surfaces. In addition to an extension of the joining zone surface, the relative velocity in the sample centre could also be increased, which has shown a positive effect on the bond strength.

UR - http://www.scopus.com/inward/record.url?scp=85068829399&partnerID=8YFLogxK

U2 - 10.1063/1.5112561

DO - 10.1063/1.5112561

M3 - Conference contribution

AN - SCOPUS:85068829399

T3 - AIP Conference Proceedings

BT - Proceedings of the 22nd International ESAFORM Conference on Material Forming

A2 - Arrazola, Pedro

A2 - Saenz de Argandona, Eneko

A2 - Otegi, Nagore

A2 - Mendiguren, Joseba

A2 - Saez de Buruaga, Mikel

A2 - Madariaga, Aitor

A2 - Galdos, Lander

T2 - 22nd International ESAFORM Conference on Material Forming, ESAFORM 2019

Y2 - 8 May 2019 through 10 May 2019

ER -