Details
Originalsprache | Englisch |
---|---|
Aufsatznummer | 126019 |
Seitenumfang | 14 |
Fachzeitschrift | Geochemistry |
Jahrgang | 83 |
Ausgabenummer | 4 |
Frühes Online-Datum | 2 Aug. 2023 |
Publikationsstatus | Veröffentlicht - Nov. 2023 |
Abstract
To understand the mobility of heavy metals during oxidative weathering of sulfides, we investigated weathering processes of tetrahedrite [(Cu,Fe,Zn,Hg)12(Sb,As)4S13] in an oxidation zone with abundant siderite (FeCO3) and baryte (BaSO4) at Rudňany (Slovakia). The focus of this work lied in the isotopic (δ65Cu, δ202Hg, δ34S) variations of the minerals during weathering and the interpretation of such changes. In the studied oxidation zone, Hg-rich tetrahedrite converts in situ to pockets of powdery cinnabar (HgS) and an X-ray amorphous mixture rich in Sb, Fe, and Cu that slowly re-crystallizes to Cu-rich tripuhyite (FeSbO4). Copper is mobile and precipitates as malachite [Cu2(OH)2(CO3)], azurite [Cu3(OH)2(CO3)2], or less abundant clinoclase [Cu3(AsO4)(OH)3]. The isotopic composition (δ65Cu) of tetrahedrite correlates well with the degree of weathering and varies between 0.0 ‰ and −4.0 ‰. This correlation is caused by isotopic changes during dissolution and subsequent rapid equilibration of δ65Cu values in the tetrahedrite relics. Simple diffusion models showed that equilibration of Cu isotopic values in the tetrahedrite relics proceeds rapidly, on the order of hundreds or thousands of years. Abundant secondary iron oxides draw light Cu isotopes from the aqueous solutions and shift the isotopic composition of malachite and azurite to higher δ65Cu values as the distance to the primary tetrahedrite increases. Clinoclase and tripuhyite have lower δ65Cu values and are spatially restricted near to the weathering tetrahedrite. The Hg and S isotopic composition of tetrahedrite is δ202Hg = −1.27 ‰, δ34S = −1.89 ‰, that of the powdery secondary cinnabar is δ202Hg = +0.07 ‰, δ34S = −5.50 ‰. The Hg isotopic difference can be explained by partial reduction of Hg(II) to Hg(0) by siderite and the following evaporation of Hg(0). The S isotopic changes indicate no involvement of biotic reactions in the oxidation zone, probably because of its hostility owing to high concentrations of toxic elements. This work shows that the Cu isotopic composition of the primary sulfides minerals changes during weathering through self-diffusion of Cu in those minerals. This finding is important for the use of Cu isotopes as tracers of geochemical cycling of metals in the environment. Another important finding is the Hg in the oxidation zones evaporates and contributes to the global cycling of this element through atmospheric emission.
ASJC Scopus Sachgebiete
- Erdkunde und Planetologie (insg.)
- Geophysik
- Erdkunde und Planetologie (insg.)
- Geochemie und Petrologie
Zitieren
- Standard
- Harvard
- Apa
- Vancouver
- BibTex
- RIS
in: Geochemistry, Jahrgang 83, Nr. 4, 126019, 11.2023.
Publikation: Beitrag in Fachzeitschrift › Artikel › Forschung › Peer-Review
}
TY - JOUR
T1 - Isotope diffusion and re-equilibration of copper and evaporation of mercury during weathering of tetrahedrite in an oxidation zone
AU - Majzlan, Juraj
AU - Herrmann, Julia
AU - Števko, Martin
AU - Wiederhold, Jan G.
AU - Lazarov, Marina
AU - Milovský, Rastislav
N1 - Funding Information: We are thankful to Ryan Mathur and four anonymous reviewers whose comments improved the quality and clarity of the manuscript. We also appreciate the editorial handling by Astrid Holzheid. This work was financially supported by a Deutsche Forschungsgemeinschaft grant MA 3927/19-1 .
PY - 2023/11
Y1 - 2023/11
N2 - To understand the mobility of heavy metals during oxidative weathering of sulfides, we investigated weathering processes of tetrahedrite [(Cu,Fe,Zn,Hg)12(Sb,As)4S13] in an oxidation zone with abundant siderite (FeCO3) and baryte (BaSO4) at Rudňany (Slovakia). The focus of this work lied in the isotopic (δ65Cu, δ202Hg, δ34S) variations of the minerals during weathering and the interpretation of such changes. In the studied oxidation zone, Hg-rich tetrahedrite converts in situ to pockets of powdery cinnabar (HgS) and an X-ray amorphous mixture rich in Sb, Fe, and Cu that slowly re-crystallizes to Cu-rich tripuhyite (FeSbO4). Copper is mobile and precipitates as malachite [Cu2(OH)2(CO3)], azurite [Cu3(OH)2(CO3)2], or less abundant clinoclase [Cu3(AsO4)(OH)3]. The isotopic composition (δ65Cu) of tetrahedrite correlates well with the degree of weathering and varies between 0.0 ‰ and −4.0 ‰. This correlation is caused by isotopic changes during dissolution and subsequent rapid equilibration of δ65Cu values in the tetrahedrite relics. Simple diffusion models showed that equilibration of Cu isotopic values in the tetrahedrite relics proceeds rapidly, on the order of hundreds or thousands of years. Abundant secondary iron oxides draw light Cu isotopes from the aqueous solutions and shift the isotopic composition of malachite and azurite to higher δ65Cu values as the distance to the primary tetrahedrite increases. Clinoclase and tripuhyite have lower δ65Cu values and are spatially restricted near to the weathering tetrahedrite. The Hg and S isotopic composition of tetrahedrite is δ202Hg = −1.27 ‰, δ34S = −1.89 ‰, that of the powdery secondary cinnabar is δ202Hg = +0.07 ‰, δ34S = −5.50 ‰. The Hg isotopic difference can be explained by partial reduction of Hg(II) to Hg(0) by siderite and the following evaporation of Hg(0). The S isotopic changes indicate no involvement of biotic reactions in the oxidation zone, probably because of its hostility owing to high concentrations of toxic elements. This work shows that the Cu isotopic composition of the primary sulfides minerals changes during weathering through self-diffusion of Cu in those minerals. This finding is important for the use of Cu isotopes as tracers of geochemical cycling of metals in the environment. Another important finding is the Hg in the oxidation zones evaporates and contributes to the global cycling of this element through atmospheric emission.
AB - To understand the mobility of heavy metals during oxidative weathering of sulfides, we investigated weathering processes of tetrahedrite [(Cu,Fe,Zn,Hg)12(Sb,As)4S13] in an oxidation zone with abundant siderite (FeCO3) and baryte (BaSO4) at Rudňany (Slovakia). The focus of this work lied in the isotopic (δ65Cu, δ202Hg, δ34S) variations of the minerals during weathering and the interpretation of such changes. In the studied oxidation zone, Hg-rich tetrahedrite converts in situ to pockets of powdery cinnabar (HgS) and an X-ray amorphous mixture rich in Sb, Fe, and Cu that slowly re-crystallizes to Cu-rich tripuhyite (FeSbO4). Copper is mobile and precipitates as malachite [Cu2(OH)2(CO3)], azurite [Cu3(OH)2(CO3)2], or less abundant clinoclase [Cu3(AsO4)(OH)3]. The isotopic composition (δ65Cu) of tetrahedrite correlates well with the degree of weathering and varies between 0.0 ‰ and −4.0 ‰. This correlation is caused by isotopic changes during dissolution and subsequent rapid equilibration of δ65Cu values in the tetrahedrite relics. Simple diffusion models showed that equilibration of Cu isotopic values in the tetrahedrite relics proceeds rapidly, on the order of hundreds or thousands of years. Abundant secondary iron oxides draw light Cu isotopes from the aqueous solutions and shift the isotopic composition of malachite and azurite to higher δ65Cu values as the distance to the primary tetrahedrite increases. Clinoclase and tripuhyite have lower δ65Cu values and are spatially restricted near to the weathering tetrahedrite. The Hg and S isotopic composition of tetrahedrite is δ202Hg = −1.27 ‰, δ34S = −1.89 ‰, that of the powdery secondary cinnabar is δ202Hg = +0.07 ‰, δ34S = −5.50 ‰. The Hg isotopic difference can be explained by partial reduction of Hg(II) to Hg(0) by siderite and the following evaporation of Hg(0). The S isotopic changes indicate no involvement of biotic reactions in the oxidation zone, probably because of its hostility owing to high concentrations of toxic elements. This work shows that the Cu isotopic composition of the primary sulfides minerals changes during weathering through self-diffusion of Cu in those minerals. This finding is important for the use of Cu isotopes as tracers of geochemical cycling of metals in the environment. Another important finding is the Hg in the oxidation zones evaporates and contributes to the global cycling of this element through atmospheric emission.
KW - Copper
KW - Isotopes
KW - Mercury
KW - Oxidation zone
KW - Weathering
UR - http://www.scopus.com/inward/record.url?scp=85166976614&partnerID=8YFLogxK
U2 - 10.1016/j.chemer.2023.126019
DO - 10.1016/j.chemer.2023.126019
M3 - Article
AN - SCOPUS:85166976614
VL - 83
JO - Geochemistry
JF - Geochemistry
SN - 0009-2819
IS - 4
M1 - 126019
ER -