Details
Originalsprache | Englisch |
---|---|
Seiten (von - bis) | 49-62 |
Seitenumfang | 14 |
Fachzeitschrift | Methods in molecular biology (Clifton, N.J.) |
Jahrgang | 355 |
Publikationsstatus | Veröffentlicht - 2007 |
Extern publiziert | Ja |
Abstract
Mitochondria carry out a variety of biochemical processes in plant cells. Their primary role is the oxidation of organic acids via the tricarboxylic acid cycle and the synthesis of ATP coupled to the transfer of electrons from reduced NAD+ to O2 via the electron transport chain. However, they also perform many important secondary functions such as synthesis of nucleotides, amino acids, lipids, and vitamins, they contain their own genome and undertake transcription and translation by some unique mechanisms, they actively import proteins and metabolites from the cytosol by a complex set of carriers and membrane channels, they influence programmed cell death of plants, and they respond to cellular signals such as oxidative stress. To understand the full range of mitochondrial functions in plants, the mechanisms that govern their biogenesis, and the way in which mitochondrial activity is perceived by the nucleus requires precise information about the protein components of these organelles. Isolation of mitochondria to identify their proteomes and the changes in these proteomes during development and environmental stress treatments is already under way. In this chapter we provide methods for isolating mitochondria from different plant tissue types, advice on assessing purity and storage of mitochondrial samples, and approaches to fractionate mitochondria to separate their membranes and soluble compartments from each other for proteome analysis.
ASJC Scopus Sachgebiete
- Biochemie, Genetik und Molekularbiologie (insg.)
- Molekularbiologie
- Biochemie, Genetik und Molekularbiologie (insg.)
- Genetik
Zitieren
- Standard
- Harvard
- Apa
- Vancouver
- BibTex
- RIS
in: Methods in molecular biology (Clifton, N.J.), Jahrgang 355, 2007, S. 49-62.
Publikation: Beitrag in Fachzeitschrift › Artikel › Forschung › Peer-Review
}
TY - JOUR
T1 - Isolation and subfractionation of plant mitochondria for proteomic analysis.
AU - Eubel, Holger
AU - Heazlewood, Joshua L.
AU - Millar, A. Harvey
N1 - Copyright: This record is sourced from MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine
PY - 2007
Y1 - 2007
N2 - Mitochondria carry out a variety of biochemical processes in plant cells. Their primary role is the oxidation of organic acids via the tricarboxylic acid cycle and the synthesis of ATP coupled to the transfer of electrons from reduced NAD+ to O2 via the electron transport chain. However, they also perform many important secondary functions such as synthesis of nucleotides, amino acids, lipids, and vitamins, they contain their own genome and undertake transcription and translation by some unique mechanisms, they actively import proteins and metabolites from the cytosol by a complex set of carriers and membrane channels, they influence programmed cell death of plants, and they respond to cellular signals such as oxidative stress. To understand the full range of mitochondrial functions in plants, the mechanisms that govern their biogenesis, and the way in which mitochondrial activity is perceived by the nucleus requires precise information about the protein components of these organelles. Isolation of mitochondria to identify their proteomes and the changes in these proteomes during development and environmental stress treatments is already under way. In this chapter we provide methods for isolating mitochondria from different plant tissue types, advice on assessing purity and storage of mitochondrial samples, and approaches to fractionate mitochondria to separate their membranes and soluble compartments from each other for proteome analysis.
AB - Mitochondria carry out a variety of biochemical processes in plant cells. Their primary role is the oxidation of organic acids via the tricarboxylic acid cycle and the synthesis of ATP coupled to the transfer of electrons from reduced NAD+ to O2 via the electron transport chain. However, they also perform many important secondary functions such as synthesis of nucleotides, amino acids, lipids, and vitamins, they contain their own genome and undertake transcription and translation by some unique mechanisms, they actively import proteins and metabolites from the cytosol by a complex set of carriers and membrane channels, they influence programmed cell death of plants, and they respond to cellular signals such as oxidative stress. To understand the full range of mitochondrial functions in plants, the mechanisms that govern their biogenesis, and the way in which mitochondrial activity is perceived by the nucleus requires precise information about the protein components of these organelles. Isolation of mitochondria to identify their proteomes and the changes in these proteomes during development and environmental stress treatments is already under way. In this chapter we provide methods for isolating mitochondria from different plant tissue types, advice on assessing purity and storage of mitochondrial samples, and approaches to fractionate mitochondria to separate their membranes and soluble compartments from each other for proteome analysis.
UR - http://www.scopus.com/inward/record.url?scp=39049176896&partnerID=8YFLogxK
M3 - Article
C2 - 17093302
AN - SCOPUS:39049176896
VL - 355
SP - 49
EP - 62
JO - Methods in molecular biology (Clifton, N.J.)
JF - Methods in molecular biology (Clifton, N.J.)
SN - 1064-3745
ER -