Irreducible flat SL(2,R)-connections on the trivial holomorphic bundle

Publikation: Beitrag in FachzeitschriftArtikelForschungPeer-Review

Autoren

  • Indranil Biswas
  • Sorin Dumitrescu
  • Sebastian Heller

Organisationseinheiten

Externe Organisationen

  • Tata Institute of Fundamental Research (TIFR HYD)
  • Université Côte d'Azur
Forschungs-netzwerk anzeigen

Details

OriginalspracheEnglisch
Seiten (von - bis)28-46
Seitenumfang19
FachzeitschriftJ. Math. Pures Appl.
Jahrgang149
Frühes Online-Datum8 Dez. 2020
PublikationsstatusVeröffentlicht - Mai 2021

Abstract

We construct an irreducible holomorphic connection with SL(2,R)-monodromy on the trivial holomorphic vector bundle of rank two over a compact Riemann surface. This answers a question of Calsamiglia, Deroin, Heu and Loray in \cite{CDHL}.

ASJC Scopus Sachgebiete

Zitieren

Irreducible flat SL(2,R)-connections on the trivial holomorphic bundle. / Biswas, Indranil; Dumitrescu, Sorin; Heller, Sebastian.
in: J. Math. Pures Appl., Jahrgang 149, 05.2021, S. 28-46.

Publikation: Beitrag in FachzeitschriftArtikelForschungPeer-Review

Biswas I, Dumitrescu S, Heller S. Irreducible flat SL(2,R)-connections on the trivial holomorphic bundle. J. Math. Pures Appl. 2021 Mai;149:28-46. Epub 2020 Dez 8. doi: 10.48550/arXiv.2003.06997, 10.1016/j.matpur.2020.12.005
Biswas, Indranil ; Dumitrescu, Sorin ; Heller, Sebastian. / Irreducible flat SL(2,R)-connections on the trivial holomorphic bundle. in: J. Math. Pures Appl. 2021 ; Jahrgang 149. S. 28-46.
Download
@article{5fc439b370c74f468ffe5e48b46f1859,
title = "Irreducible flat SL(2,R)-connections on the trivial holomorphic bundle",
abstract = " We construct an irreducible holomorphic connection with SL(2,R)-monodromy on the trivial holomorphic vector bundle of rank two over a compact Riemann surface. This answers a question of Calsamiglia, Deroin, Heu and Loray in \cite{CDHL}. ",
keywords = "math.AG, math.CV, math.DG, 34M03, 34M56, 14H15, 53A55, Holomorphic connection, Local system, Character variety, Monodromy",
author = "Indranil Biswas and Sorin Dumitrescu and Sebastian Heller",
note = " Funding Information: We are grateful to the referees for helpful comments. This work has been supported by the French government through the UCAJEDI Investments in the Future project managed by the National Research Agency (ANR) with the reference number ANR2152IDEX201. The first-named author is partially supported by a J.C. Bose Fellowship, and school of mathematics, TIFR, is supported by 12-R&D-TFR-5.01-0500.",
year = "2021",
month = may,
doi = "10.48550/arXiv.2003.06997",
language = "English",
volume = "149",
pages = "28--46",
journal = "J. Math. Pures Appl.",
publisher = "Elsevier Masson SAS",

}

Download

TY - JOUR

T1 - Irreducible flat SL(2,R)-connections on the trivial holomorphic bundle

AU - Biswas, Indranil

AU - Dumitrescu, Sorin

AU - Heller, Sebastian

N1 - Funding Information: We are grateful to the referees for helpful comments. This work has been supported by the French government through the UCAJEDI Investments in the Future project managed by the National Research Agency (ANR) with the reference number ANR2152IDEX201. The first-named author is partially supported by a J.C. Bose Fellowship, and school of mathematics, TIFR, is supported by 12-R&D-TFR-5.01-0500.

PY - 2021/5

Y1 - 2021/5

N2 - We construct an irreducible holomorphic connection with SL(2,R)-monodromy on the trivial holomorphic vector bundle of rank two over a compact Riemann surface. This answers a question of Calsamiglia, Deroin, Heu and Loray in \cite{CDHL}.

AB - We construct an irreducible holomorphic connection with SL(2,R)-monodromy on the trivial holomorphic vector bundle of rank two over a compact Riemann surface. This answers a question of Calsamiglia, Deroin, Heu and Loray in \cite{CDHL}.

KW - math.AG

KW - math.CV

KW - math.DG

KW - 34M03, 34M56, 14H15, 53A55

KW - Holomorphic connection

KW - Local system

KW - Character variety

KW - Monodromy

UR - http://www.scopus.com/inward/record.url?scp=85097739036&partnerID=8YFLogxK

U2 - 10.48550/arXiv.2003.06997

DO - 10.48550/arXiv.2003.06997

M3 - Article

VL - 149

SP - 28

EP - 46

JO - J. Math. Pures Appl.

JF - J. Math. Pures Appl.

ER -