Details
Originalsprache | Englisch |
---|---|
Aufsatznummer | 170772 |
Fachzeitschrift | OPTIK |
Jahrgang | 280 |
Frühes Online-Datum | 15 März 2023 |
Publikationsstatus | Veröffentlicht - Juni 2023 |
Abstract
We present a detailed overview of the physics of two-color soliton molecules in nonlinear waveguides, i.e. bound states of localized optical pulses which are held together due to an incoherent interaction mechanism. The mutual confinement, or trapping, of the subpulses, which leads to a stable propagation of the pulse compound, is enabled by the nonlinear Kerr effect. Special attention is paid to the description of the binding mechanism in terms of attractive potential wells, induced by the refractive index changes of the subpulses, exerted on one another through cross-phase modulation. Specifically, we discuss nonlinear-photonics meta atoms, given by pulse compounds consisting of a strong trapping pulse and a weak trapped pulse, for which trapped states of low intensity are determined by a Schrödinger-type eigenproblem. We discuss the rich dynamical behavior of such meta-atoms, demonstrating that an increase of the group-velocity mismatch of both subpulses leads to an ionization-like trapping-to-escape transition. We further demonstrate that if both constituent pulses are of similar amplitude, molecule-like bound-states are formed. We show that z-periodic amplitude variations permit a coupling of these pulse compound to dispersive waves, resulting in the resonant emission of Kushi-comb-like multi-frequency radiation.
ASJC Scopus Sachgebiete
- Werkstoffwissenschaften (insg.)
- Elektronische, optische und magnetische Materialien
- Physik und Astronomie (insg.)
- Atom- und Molekularphysik sowie Optik
- Ingenieurwesen (insg.)
- Elektrotechnik und Elektronik
Zitieren
- Standard
- Harvard
- Apa
- Vancouver
- BibTex
- RIS
in: OPTIK, Jahrgang 280, 170772, 06.2023.
Publikation: Beitrag in Fachzeitschrift › Artikel › Forschung › Peer-Review
}
TY - JOUR
T1 - (Invited) Two-color soliton meta-atoms and molecules
AU - Melchert, O.
AU - Willms, S.
AU - Babushkin, I.
AU - Morgner, U.
AU - Demircan, A.
N1 - Funding Information: We acknowledge support from the Deutsche Forschungsgemeinschaft (DFG), Germany under Germany’s Excellence Strategy within the Cluster of Excellence PhoenixD (Photonics, Optics, and Engineering – Innovation Across Disciplines) (EXC 2122, projectID 390833453). All authors approved the version of the manuscript to be published.
PY - 2023/6
Y1 - 2023/6
N2 - We present a detailed overview of the physics of two-color soliton molecules in nonlinear waveguides, i.e. bound states of localized optical pulses which are held together due to an incoherent interaction mechanism. The mutual confinement, or trapping, of the subpulses, which leads to a stable propagation of the pulse compound, is enabled by the nonlinear Kerr effect. Special attention is paid to the description of the binding mechanism in terms of attractive potential wells, induced by the refractive index changes of the subpulses, exerted on one another through cross-phase modulation. Specifically, we discuss nonlinear-photonics meta atoms, given by pulse compounds consisting of a strong trapping pulse and a weak trapped pulse, for which trapped states of low intensity are determined by a Schrödinger-type eigenproblem. We discuss the rich dynamical behavior of such meta-atoms, demonstrating that an increase of the group-velocity mismatch of both subpulses leads to an ionization-like trapping-to-escape transition. We further demonstrate that if both constituent pulses are of similar amplitude, molecule-like bound-states are formed. We show that z-periodic amplitude variations permit a coupling of these pulse compound to dispersive waves, resulting in the resonant emission of Kushi-comb-like multi-frequency radiation.
AB - We present a detailed overview of the physics of two-color soliton molecules in nonlinear waveguides, i.e. bound states of localized optical pulses which are held together due to an incoherent interaction mechanism. The mutual confinement, or trapping, of the subpulses, which leads to a stable propagation of the pulse compound, is enabled by the nonlinear Kerr effect. Special attention is paid to the description of the binding mechanism in terms of attractive potential wells, induced by the refractive index changes of the subpulses, exerted on one another through cross-phase modulation. Specifically, we discuss nonlinear-photonics meta atoms, given by pulse compounds consisting of a strong trapping pulse and a weak trapped pulse, for which trapped states of low intensity are determined by a Schrödinger-type eigenproblem. We discuss the rich dynamical behavior of such meta-atoms, demonstrating that an increase of the group-velocity mismatch of both subpulses leads to an ionization-like trapping-to-escape transition. We further demonstrate that if both constituent pulses are of similar amplitude, molecule-like bound-states are formed. We show that z-periodic amplitude variations permit a coupling of these pulse compound to dispersive waves, resulting in the resonant emission of Kushi-comb-like multi-frequency radiation.
KW - Nonlinear optics
KW - Optical solitons
KW - Resonant radiation
KW - Two-color soliton molecules
UR - http://www.scopus.com/inward/record.url?scp=85150261123&partnerID=8YFLogxK
U2 - 10.1016/j.ijleo.2023.170772
DO - 10.1016/j.ijleo.2023.170772
M3 - Article
AN - SCOPUS:85150261123
VL - 280
JO - OPTIK
JF - OPTIK
SN - 0030-4026
M1 - 170772
ER -