Details
Originalsprache | Englisch |
---|---|
Qualifikation | Doctor rerum naturalium |
Gradverleihende Hochschule | |
Betreut von |
|
Datum der Verleihung des Grades | 9 Sept. 2022 |
Erscheinungsort | Hannover |
Publikationsstatus | Veröffentlicht - 2023 |
Abstract
Zitieren
- Standard
- Harvard
- Apa
- Vancouver
- BibTex
- RIS
Hannover, 2023. 241 S.
Publikation: Qualifikations-/Studienabschlussarbeit › Dissertation
}
TY - BOOK
T1 - Investigation of the metabolism of rare nucleotides in plants
AU - Straube, Henryk
N1 - Doctoral thesis
PY - 2023
Y1 - 2023
N2 - Nucleotides are metabolites involved in primary metabolism, and specialized metabolism and have a regulatory role in various biochemical reactions in all forms of life. While in other organisms, the nucleotide metabolome was characterized extensively, comparatively little is known about the cellular concentrations of nucleotides in plants. The aim of this dissertation was to investigate the nucleotide metabolome and enzymes influencing the composition and quantities of nucleotides in plants. For this purpose, a method for the analysis of nucleotides and nucleosides in plants and algae was developed (Chapter 2.1), which comprises efficient quenching of enzymatic activity, liquid-liquid extraction and solid phase extraction employing a weak-anionexchange resin. This method allowed the analysis of the nucleotide metabolome of plants in great depth including the quantification of low abundant deoxyribonucleotides and deoxyribonucleosides. The details of the method were summarized in an article, serving as a laboratory protocol (Chapter 2.2). Furthermore, we contributed a review article (Chapter 2.3) that summarizes the literature about nucleotide analysis and recent technological advances with a focus on plants and factors influencing and hindering the analysis of nucleotides in plants, i.e., a complex metabolic matrix, highly stable phosphatases and physicochemical properties of nucleotides. To analyze the sub-cellular concentrations of metabolites, a protocol for the rapid isolation of highly pure mitochondria utilizing affinity chromatography was developed (Chapter 2.4). The method for the purification of nucleotides furthermore contributed to the comprehensive analysis of the nucleotide metabolome in germinating seeds and in establishing seedlings of A. thaliana, with a focus on genes involved in the synthesis of thymidilates (Chapter 2.5) and the characterization of a novel enzyme of purine nucleotide degradation, the XANTHOSINE MONOPHOSPHATE PHOSPHATASE (Chapter 2.6). Protein homology analysis comparing A. thaliana, S. cerevisiae, and H. sapiens led to the identification and characterization of an enzyme involved in the metabolite damage repair system of plants, the INOSINE TRIPHOSPHATE PYROPHOSPHATASE (Chapter 2.7). It was shown that this enzyme dephosphorylates deaminated purine nucleotide triphosphates and thus prevents their incorporation into nucleic acids. Lossof-function mutants senesce early and have a constitutively increased content of salicylic acid. Also, the source of deaminated purine nucleotides in plants was investigated and it was shown that abiotic factors contribute to nucleotide damage.
AB - Nucleotides are metabolites involved in primary metabolism, and specialized metabolism and have a regulatory role in various biochemical reactions in all forms of life. While in other organisms, the nucleotide metabolome was characterized extensively, comparatively little is known about the cellular concentrations of nucleotides in plants. The aim of this dissertation was to investigate the nucleotide metabolome and enzymes influencing the composition and quantities of nucleotides in plants. For this purpose, a method for the analysis of nucleotides and nucleosides in plants and algae was developed (Chapter 2.1), which comprises efficient quenching of enzymatic activity, liquid-liquid extraction and solid phase extraction employing a weak-anionexchange resin. This method allowed the analysis of the nucleotide metabolome of plants in great depth including the quantification of low abundant deoxyribonucleotides and deoxyribonucleosides. The details of the method were summarized in an article, serving as a laboratory protocol (Chapter 2.2). Furthermore, we contributed a review article (Chapter 2.3) that summarizes the literature about nucleotide analysis and recent technological advances with a focus on plants and factors influencing and hindering the analysis of nucleotides in plants, i.e., a complex metabolic matrix, highly stable phosphatases and physicochemical properties of nucleotides. To analyze the sub-cellular concentrations of metabolites, a protocol for the rapid isolation of highly pure mitochondria utilizing affinity chromatography was developed (Chapter 2.4). The method for the purification of nucleotides furthermore contributed to the comprehensive analysis of the nucleotide metabolome in germinating seeds and in establishing seedlings of A. thaliana, with a focus on genes involved in the synthesis of thymidilates (Chapter 2.5) and the characterization of a novel enzyme of purine nucleotide degradation, the XANTHOSINE MONOPHOSPHATE PHOSPHATASE (Chapter 2.6). Protein homology analysis comparing A. thaliana, S. cerevisiae, and H. sapiens led to the identification and characterization of an enzyme involved in the metabolite damage repair system of plants, the INOSINE TRIPHOSPHATE PYROPHOSPHATASE (Chapter 2.7). It was shown that this enzyme dephosphorylates deaminated purine nucleotide triphosphates and thus prevents their incorporation into nucleic acids. Lossof-function mutants senesce early and have a constitutively increased content of salicylic acid. Also, the source of deaminated purine nucleotides in plants was investigated and it was shown that abiotic factors contribute to nucleotide damage.
U2 - 10.15488/13270
DO - 10.15488/13270
M3 - Doctoral thesis
CY - Hannover
ER -