Inverse design of integrated phase-tunable beam couplers

Publikation: Beitrag in Buch/Bericht/Sammelwerk/KonferenzbandAufsatz in KonferenzbandForschungPeer-Review

Forschungs-netzwerk anzeigen

Details

OriginalspracheEnglisch
Titel des Sammelwerks2023 Conference on Lasers and Electro-Optics Europe and European Quantum Electronics Conference
UntertitelCLEO/Europe-EQEC
Herausgeber (Verlag)Institute of Electrical and Electronics Engineers Inc.
Seitenumfang1
ISBN (elektronisch)9798350345995
ISBN (Print)979-8-3503-4600-8
PublikationsstatusVeröffentlicht - 2023
Veranstaltung2023 Conference on Lasers and Electro-Optics Europe and European Quantum Electronics Conference, CLEO/Europe-EQEC 2023 - Munich, Deutschland
Dauer: 26 Juni 202330 Juni 2023

Abstract

Quantum computing with linear optics mandates the interaction between two photons via the Hong-Ou-Mandel effect [1]. Such effect is typically achieved in linear beam splitters. Two-port beam splitters have been realized in integrated optical technology for quantum logic gates, quantum metrology and quantum information processing [2]. The general scheme for a two-port beam splitter in a linear implementation is shown in Fig. 1(a), where θ12) is the phase difference between the two output ports O1 and O2 considering the input beam from I1 (I2). Lossless beam splitters produce a phase sum α = θ1 + θ2 = π at the output ports of the beam splitter (see Fig. 1(b)). Based on the Hong-Ou-Mandel effect, the phase α affects the quantum interference between two photons. However lossless beam splitters do not allow the tunability of α. Here we demonstrated that beam splitters can be designed with exact phase control, and thus tunable α, using adjoint-based topology optimization.

ASJC Scopus Sachgebiete

Zitieren

Inverse design of integrated phase-tunable beam couplers. / Nanda, Abhishek; Kues, Michael; Calà Lesina, Antonio.
2023 Conference on Lasers and Electro-Optics Europe and European Quantum Electronics Conference: CLEO/Europe-EQEC . Institute of Electrical and Electronics Engineers Inc., 2023.

Publikation: Beitrag in Buch/Bericht/Sammelwerk/KonferenzbandAufsatz in KonferenzbandForschungPeer-Review

Nanda, A, Kues, M & Calà Lesina, A 2023, Inverse design of integrated phase-tunable beam couplers. in 2023 Conference on Lasers and Electro-Optics Europe and European Quantum Electronics Conference: CLEO/Europe-EQEC . Institute of Electrical and Electronics Engineers Inc., 2023 Conference on Lasers and Electro-Optics Europe and European Quantum Electronics Conference, CLEO/Europe-EQEC 2023, Munich, Deutschland, 26 Juni 2023. https://doi.org/10.1109/CLEO/EUROPE-EQEC57999.2023.10232039
Nanda, A., Kues, M., & Calà Lesina, A. (2023). Inverse design of integrated phase-tunable beam couplers. In 2023 Conference on Lasers and Electro-Optics Europe and European Quantum Electronics Conference: CLEO/Europe-EQEC Institute of Electrical and Electronics Engineers Inc.. https://doi.org/10.1109/CLEO/EUROPE-EQEC57999.2023.10232039
Nanda A, Kues M, Calà Lesina A. Inverse design of integrated phase-tunable beam couplers. in 2023 Conference on Lasers and Electro-Optics Europe and European Quantum Electronics Conference: CLEO/Europe-EQEC . Institute of Electrical and Electronics Engineers Inc. 2023 doi: 10.1109/CLEO/EUROPE-EQEC57999.2023.10232039
Nanda, Abhishek ; Kues, Michael ; Calà Lesina, Antonio. / Inverse design of integrated phase-tunable beam couplers. 2023 Conference on Lasers and Electro-Optics Europe and European Quantum Electronics Conference: CLEO/Europe-EQEC . Institute of Electrical and Electronics Engineers Inc., 2023.
Download
@inproceedings{4206e03ffa8542bc9f0792737c01a2d8,
title = "Inverse design of integrated phase-tunable beam couplers",
abstract = "Quantum computing with linear optics mandates the interaction between two photons via the Hong-Ou-Mandel effect [1]. Such effect is typically achieved in linear beam splitters. Two-port beam splitters have been realized in integrated optical technology for quantum logic gates, quantum metrology and quantum information processing [2]. The general scheme for a two-port beam splitter in a linear implementation is shown in Fig. 1(a), where θ1 (θ2) is the phase difference between the two output ports O1 and O2 considering the input beam from I1 (I2). Lossless beam splitters produce a phase sum α = θ1 + θ2 = π at the output ports of the beam splitter (see Fig. 1(b)). Based on the Hong-Ou-Mandel effect, the phase α affects the quantum interference between two photons. However lossless beam splitters do not allow the tunability of α. Here we demonstrated that beam splitters can be designed with exact phase control, and thus tunable α, using adjoint-based topology optimization.",
author = "Abhishek Nanda and Michael Kues and {Cal{\`a} Lesina}, Antonio",
note = "Funding Information: This work received funding from the German Research Foundation (DFG) under Germany's Excellence Strategy within the Cluster of Excellence PhoenixD (EXC 2122, Project ID 390833453). ; 2023 Conference on Lasers and Electro-Optics Europe and European Quantum Electronics Conference, CLEO/Europe-EQEC 2023 ; Conference date: 26-06-2023 Through 30-06-2023",
year = "2023",
doi = "10.1109/CLEO/EUROPE-EQEC57999.2023.10232039",
language = "English",
isbn = "979-8-3503-4600-8",
booktitle = "2023 Conference on Lasers and Electro-Optics Europe and European Quantum Electronics Conference",
publisher = "Institute of Electrical and Electronics Engineers Inc.",
address = "United States",

}

Download

TY - GEN

T1 - Inverse design of integrated phase-tunable beam couplers

AU - Nanda, Abhishek

AU - Kues, Michael

AU - Calà Lesina, Antonio

N1 - Funding Information: This work received funding from the German Research Foundation (DFG) under Germany's Excellence Strategy within the Cluster of Excellence PhoenixD (EXC 2122, Project ID 390833453).

PY - 2023

Y1 - 2023

N2 - Quantum computing with linear optics mandates the interaction between two photons via the Hong-Ou-Mandel effect [1]. Such effect is typically achieved in linear beam splitters. Two-port beam splitters have been realized in integrated optical technology for quantum logic gates, quantum metrology and quantum information processing [2]. The general scheme for a two-port beam splitter in a linear implementation is shown in Fig. 1(a), where θ1 (θ2) is the phase difference between the two output ports O1 and O2 considering the input beam from I1 (I2). Lossless beam splitters produce a phase sum α = θ1 + θ2 = π at the output ports of the beam splitter (see Fig. 1(b)). Based on the Hong-Ou-Mandel effect, the phase α affects the quantum interference between two photons. However lossless beam splitters do not allow the tunability of α. Here we demonstrated that beam splitters can be designed with exact phase control, and thus tunable α, using adjoint-based topology optimization.

AB - Quantum computing with linear optics mandates the interaction between two photons via the Hong-Ou-Mandel effect [1]. Such effect is typically achieved in linear beam splitters. Two-port beam splitters have been realized in integrated optical technology for quantum logic gates, quantum metrology and quantum information processing [2]. The general scheme for a two-port beam splitter in a linear implementation is shown in Fig. 1(a), where θ1 (θ2) is the phase difference between the two output ports O1 and O2 considering the input beam from I1 (I2). Lossless beam splitters produce a phase sum α = θ1 + θ2 = π at the output ports of the beam splitter (see Fig. 1(b)). Based on the Hong-Ou-Mandel effect, the phase α affects the quantum interference between two photons. However lossless beam splitters do not allow the tunability of α. Here we demonstrated that beam splitters can be designed with exact phase control, and thus tunable α, using adjoint-based topology optimization.

UR - http://www.scopus.com/inward/record.url?scp=85175723051&partnerID=8YFLogxK

U2 - 10.1109/CLEO/EUROPE-EQEC57999.2023.10232039

DO - 10.1109/CLEO/EUROPE-EQEC57999.2023.10232039

M3 - Conference contribution

AN - SCOPUS:85175723051

SN - 979-8-3503-4600-8

BT - 2023 Conference on Lasers and Electro-Optics Europe and European Quantum Electronics Conference

PB - Institute of Electrical and Electronics Engineers Inc.

T2 - 2023 Conference on Lasers and Electro-Optics Europe and European Quantum Electronics Conference, CLEO/Europe-EQEC 2023

Y2 - 26 June 2023 through 30 June 2023

ER -

Von denselben Autoren