Invariant hypercomplex structures and algebraic curves

Publikation: Beitrag in FachzeitschriftArtikelForschungPeer-Review

Autoren

  • Roger Bielawski

Organisationseinheiten

Forschungs-netzwerk anzeigen

Details

OriginalspracheEnglisch
Seiten (von - bis)122-129
Seitenumfang8
FachzeitschriftMathematische Nachrichten
Jahrgang296
Ausgabenummer1
Frühes Online-Datum12 Okt. 2022
PublikationsstatusVeröffentlicht - Jan. 2023

Abstract

We show that (Formula presented.) -invariant hypercomplex structures on (open subsets) of regular semisimple adjoint orbits in (Formula presented.) correspond to algebraic curves C of genus (Formula presented.), equipped with a flat projection (Formula presented.) of degree k, and an antiholomorphic involution (Formula presented.) covering the antipodal map on (Formula presented.).

ASJC Scopus Sachgebiete

Zitieren

Invariant hypercomplex structures and algebraic curves. / Bielawski, Roger.
in: Mathematische Nachrichten, Jahrgang 296, Nr. 1, 01.2023, S. 122-129.

Publikation: Beitrag in FachzeitschriftArtikelForschungPeer-Review

Bielawski R. Invariant hypercomplex structures and algebraic curves. Mathematische Nachrichten. 2023 Jan;296(1):122-129. Epub 2022 Okt 12. doi: 10.48550/arXiv.2104.11147, 10.1002/mana.202100223
Bielawski, Roger. / Invariant hypercomplex structures and algebraic curves. in: Mathematische Nachrichten. 2023 ; Jahrgang 296, Nr. 1. S. 122-129.
Download
@article{19f62ddc2f614210a9b98d36022ea95a,
title = "Invariant hypercomplex structures and algebraic curves",
abstract = "We show that (Formula presented.) -invariant hypercomplex structures on (open subsets) of regular semisimple adjoint orbits in (Formula presented.) correspond to algebraic curves C of genus (Formula presented.), equipped with a flat projection (Formula presented.) of degree k, and an antiholomorphic involution (Formula presented.) covering the antipodal map on (Formula presented.).",
keywords = "adjoint orbits, algebraic curves, Hilbert schemes of morphisms, hypercomplex structures",
author = "Roger Bielawski",
year = "2023",
month = jan,
doi = "10.48550/arXiv.2104.11147",
language = "English",
volume = "296",
pages = "122--129",
journal = "Mathematische Nachrichten",
issn = "0025-584X",
publisher = "Wiley-VCH Verlag",
number = "1",

}

Download

TY - JOUR

T1 - Invariant hypercomplex structures and algebraic curves

AU - Bielawski, Roger

PY - 2023/1

Y1 - 2023/1

N2 - We show that (Formula presented.) -invariant hypercomplex structures on (open subsets) of regular semisimple adjoint orbits in (Formula presented.) correspond to algebraic curves C of genus (Formula presented.), equipped with a flat projection (Formula presented.) of degree k, and an antiholomorphic involution (Formula presented.) covering the antipodal map on (Formula presented.).

AB - We show that (Formula presented.) -invariant hypercomplex structures on (open subsets) of regular semisimple adjoint orbits in (Formula presented.) correspond to algebraic curves C of genus (Formula presented.), equipped with a flat projection (Formula presented.) of degree k, and an antiholomorphic involution (Formula presented.) covering the antipodal map on (Formula presented.).

KW - adjoint orbits

KW - algebraic curves

KW - Hilbert schemes of morphisms

KW - hypercomplex structures

UR - http://www.scopus.com/inward/record.url?scp=85139648556&partnerID=8YFLogxK

U2 - 10.48550/arXiv.2104.11147

DO - 10.48550/arXiv.2104.11147

M3 - Article

AN - SCOPUS:85139648556

VL - 296

SP - 122

EP - 129

JO - Mathematische Nachrichten

JF - Mathematische Nachrichten

SN - 0025-584X

IS - 1

ER -