Details
Originalsprache | Englisch |
---|---|
Seiten (von - bis) | 122-129 |
Seitenumfang | 8 |
Fachzeitschrift | Mathematische Nachrichten |
Jahrgang | 296 |
Ausgabenummer | 1 |
Frühes Online-Datum | 12 Okt. 2022 |
Publikationsstatus | Veröffentlicht - Jan. 2023 |
Abstract
We show that (Formula presented.) -invariant hypercomplex structures on (open subsets) of regular semisimple adjoint orbits in (Formula presented.) correspond to algebraic curves C of genus (Formula presented.), equipped with a flat projection (Formula presented.) of degree k, and an antiholomorphic involution (Formula presented.) covering the antipodal map on (Formula presented.).
ASJC Scopus Sachgebiete
Zitieren
- Standard
- Harvard
- Apa
- Vancouver
- BibTex
- RIS
in: Mathematische Nachrichten, Jahrgang 296, Nr. 1, 01.2023, S. 122-129.
Publikation: Beitrag in Fachzeitschrift › Artikel › Forschung › Peer-Review
}
TY - JOUR
T1 - Invariant hypercomplex structures and algebraic curves
AU - Bielawski, Roger
PY - 2023/1
Y1 - 2023/1
N2 - We show that (Formula presented.) -invariant hypercomplex structures on (open subsets) of regular semisimple adjoint orbits in (Formula presented.) correspond to algebraic curves C of genus (Formula presented.), equipped with a flat projection (Formula presented.) of degree k, and an antiholomorphic involution (Formula presented.) covering the antipodal map on (Formula presented.).
AB - We show that (Formula presented.) -invariant hypercomplex structures on (open subsets) of regular semisimple adjoint orbits in (Formula presented.) correspond to algebraic curves C of genus (Formula presented.), equipped with a flat projection (Formula presented.) of degree k, and an antiholomorphic involution (Formula presented.) covering the antipodal map on (Formula presented.).
KW - adjoint orbits
KW - algebraic curves
KW - Hilbert schemes of morphisms
KW - hypercomplex structures
UR - http://www.scopus.com/inward/record.url?scp=85139648556&partnerID=8YFLogxK
U2 - 10.48550/arXiv.2104.11147
DO - 10.48550/arXiv.2104.11147
M3 - Article
AN - SCOPUS:85139648556
VL - 296
SP - 122
EP - 129
JO - Mathematische Nachrichten
JF - Mathematische Nachrichten
SN - 0025-584X
IS - 1
ER -