Details
Originalsprache | Englisch |
---|---|
Aufsatznummer | 174506 |
Fachzeitschrift | Journal of Chemical Physics |
Jahrgang | 139 |
Ausgabenummer | 17 |
Publikationsstatus | Veröffentlicht - 7 Nov. 2013 |
Abstract
The internal friction of hydrated soda-lime-silica glasses with total water content (CW) up to 1.9 wt. % was studied by dynamic mechanical analysis (DMA) using temperature-frequency sweeps from 723 K to 273 K and from 1 s-1 to 50 s-1. Total water content and concentrations of H2O molecules (CH2O) and OH groups (COH) in the DMA specimens were determined by infrared spectroscopy. For low water contents (CW ≈ COH < 0.25 wt. %) two discrete internal friction peaks below the glass transition (α relaxation) were assigned to the low-temperature motion of alkali ions (γ relaxation) and cooperative movements of dissimilar mobile species under participation of OH at higher temperature (βOH relaxation). For large water contents (C W > 1 wt. %), where significant amounts of molecular water are evident (CH2O > 0.15 wt. %), however, internal friction spectra change unexpectedly: the βOH peak heights saturate and a low temperature shoulder appears on the β-relaxation peak. This emerging relaxation mode (βH2O relaxation) was assigned to the motions of H2O molecules. βH2O relaxation was found to be faster than βOH but slower than γ relaxation. Activation energy of the different relaxation modes increased in the order γ < βH2O < βOH < α.
ASJC Scopus Sachgebiete
- Physik und Astronomie (insg.)
- Allgemeine Physik und Astronomie
- Chemie (insg.)
- Physikalische und Theoretische Chemie
Zitieren
- Standard
- Harvard
- Apa
- Vancouver
- BibTex
- RIS
in: Journal of Chemical Physics, Jahrgang 139, Nr. 17, 174506, 07.11.2013.
Publikation: Beitrag in Fachzeitschrift › Artikel › Forschung › Peer-Review
}
TY - JOUR
T1 - Internal friction of hydrated soda-lime-silicate glasses
AU - Reinsch, S.
AU - Müller, R.
AU - Deubener, J.
AU - Behrens, H.
PY - 2013/11/7
Y1 - 2013/11/7
N2 - The internal friction of hydrated soda-lime-silica glasses with total water content (CW) up to 1.9 wt. % was studied by dynamic mechanical analysis (DMA) using temperature-frequency sweeps from 723 K to 273 K and from 1 s-1 to 50 s-1. Total water content and concentrations of H2O molecules (CH2O) and OH groups (COH) in the DMA specimens were determined by infrared spectroscopy. For low water contents (CW ≈ COH < 0.25 wt. %) two discrete internal friction peaks below the glass transition (α relaxation) were assigned to the low-temperature motion of alkali ions (γ relaxation) and cooperative movements of dissimilar mobile species under participation of OH at higher temperature (βOH relaxation). For large water contents (C W > 1 wt. %), where significant amounts of molecular water are evident (CH2O > 0.15 wt. %), however, internal friction spectra change unexpectedly: the βOH peak heights saturate and a low temperature shoulder appears on the β-relaxation peak. This emerging relaxation mode (βH2O relaxation) was assigned to the motions of H2O molecules. βH2O relaxation was found to be faster than βOH but slower than γ relaxation. Activation energy of the different relaxation modes increased in the order γ < βH2O < βOH < α.
AB - The internal friction of hydrated soda-lime-silica glasses with total water content (CW) up to 1.9 wt. % was studied by dynamic mechanical analysis (DMA) using temperature-frequency sweeps from 723 K to 273 K and from 1 s-1 to 50 s-1. Total water content and concentrations of H2O molecules (CH2O) and OH groups (COH) in the DMA specimens were determined by infrared spectroscopy. For low water contents (CW ≈ COH < 0.25 wt. %) two discrete internal friction peaks below the glass transition (α relaxation) were assigned to the low-temperature motion of alkali ions (γ relaxation) and cooperative movements of dissimilar mobile species under participation of OH at higher temperature (βOH relaxation). For large water contents (C W > 1 wt. %), where significant amounts of molecular water are evident (CH2O > 0.15 wt. %), however, internal friction spectra change unexpectedly: the βOH peak heights saturate and a low temperature shoulder appears on the β-relaxation peak. This emerging relaxation mode (βH2O relaxation) was assigned to the motions of H2O molecules. βH2O relaxation was found to be faster than βOH but slower than γ relaxation. Activation energy of the different relaxation modes increased in the order γ < βH2O < βOH < α.
UR - http://www.scopus.com/inward/record.url?scp=84903362783&partnerID=8YFLogxK
U2 - 10.1063/1.4828740
DO - 10.1063/1.4828740
M3 - Article
AN - SCOPUS:84903362783
VL - 139
JO - Journal of Chemical Physics
JF - Journal of Chemical Physics
SN - 0021-9606
IS - 17
M1 - 174506
ER -