Interference of clocks: A quantum twin paradox

Publikation: Beitrag in FachzeitschriftArtikelForschungPeer-Review

Autoren

  • Sina Loriani
  • Alexander Friedrich
  • Christian Ufrecht
  • Fabio Di Pumpo
  • Stephan Kleinert
  • Sven Abend
  • Naceur Gaaloul
  • Christian Meiners
  • Christian Schubert
  • Dorothee Tell
  • Étienne Wodey
  • Magdalena Zych
  • Wolfgang Ertmer
  • Albert Roura
  • Dennis Schlippert
  • Wolfgang P Schleich
  • Ernst M Rasel
  • Enno Giese

Externe Organisationen

  • Universität Ulm
  • University of Queensland
  • Texas A and M University
  • Deutsches Zentrum für Luft- und Raumfahrt e.V. (DLR)
Forschungs-netzwerk anzeigen

Details

OriginalspracheEnglisch
Aufsatznummereaax8966
FachzeitschriftScience advances
Jahrgang5
Ausgabenummer10
Frühes Online-Datum4 Okt. 2019
PublikationsstatusVeröffentlicht - 11 Okt. 2019

Abstract

The phase of matter waves depends on proper time and is therefore susceptible to special-relativistic (kinematic) and gravitational (redshift) time dilation. Hence, it is conceivable that atom interferometers measure general-relativistic time-dilation effects. In contrast to this intuition, we show that (i) closed light-pulse interferometers without clock transitions during the pulse sequence are not sensitive to gravitational time dilation in a linear potential. (ii) They can constitute a quantum version of the special-relativistic twin paradox. (iii) Our proposed experimental geometry for a quantum-clock interferometer isolates this effect.

ASJC Scopus Sachgebiete

Zitieren

Interference of clocks: A quantum twin paradox. / Loriani, Sina; Friedrich, Alexander; Ufrecht, Christian et al.
in: Science advances, Jahrgang 5, Nr. 10, eaax8966, 11.10.2019.

Publikation: Beitrag in FachzeitschriftArtikelForschungPeer-Review

Loriani, S, Friedrich, A, Ufrecht, C, Di Pumpo, F, Kleinert, S, Abend, S, Gaaloul, N, Meiners, C, Schubert, C, Tell, D, Wodey, É, Zych, M, Ertmer, W, Roura, A, Schlippert, D, Schleich, WP, Rasel, EM & Giese, E 2019, 'Interference of clocks: A quantum twin paradox', Science advances, Jg. 5, Nr. 10, eaax8966. https://doi.org/10.48550/arXiv.1905.09102, https://doi.org/10.1126/sciadv.aax8966, https://doi.org/10.15488/10475
Loriani, S., Friedrich, A., Ufrecht, C., Di Pumpo, F., Kleinert, S., Abend, S., Gaaloul, N., Meiners, C., Schubert, C., Tell, D., Wodey, É., Zych, M., Ertmer, W., Roura, A., Schlippert, D., Schleich, W. P., Rasel, E. M., & Giese, E. (2019). Interference of clocks: A quantum twin paradox. Science advances, 5(10), Artikel eaax8966. https://doi.org/10.48550/arXiv.1905.09102, https://doi.org/10.1126/sciadv.aax8966, https://doi.org/10.15488/10475
Loriani S, Friedrich A, Ufrecht C, Di Pumpo F, Kleinert S, Abend S et al. Interference of clocks: A quantum twin paradox. Science advances. 2019 Okt 11;5(10):eaax8966. Epub 2019 Okt 4. doi: 10.48550/arXiv.1905.09102, 10.1126/sciadv.aax8966, 10.15488/10475
Loriani, Sina ; Friedrich, Alexander ; Ufrecht, Christian et al. / Interference of clocks: A quantum twin paradox. in: Science advances. 2019 ; Jahrgang 5, Nr. 10.
Download
@article{17e07cedb49942b5af5f544b55cbe678,
title = "Interference of clocks:: A quantum twin paradox",
abstract = "The phase of matter waves depends on proper time and is therefore susceptible to special-relativistic (kinematic) and gravitational (redshift) time dilation. Hence, it is conceivable that atom interferometers measure general-relativistic time-dilation effects. In contrast to this intuition, we show that (i) closed light-pulse interferometers without clock transitions during the pulse sequence are not sensitive to gravitational time dilation in a linear potential. (ii) They can constitute a quantum version of the special-relativistic twin paradox. (iii) Our proposed experimental geometry for a quantum-clock interferometer isolates this effect.",
author = "Sina Loriani and Alexander Friedrich and Christian Ufrecht and {Di Pumpo}, Fabio and Stephan Kleinert and Sven Abend and Naceur Gaaloul and Christian Meiners and Christian Schubert and Dorothee Tell and {\'E}tienne Wodey and Magdalena Zych and Wolfgang Ertmer and Albert Roura and Dennis Schlippert and Schleich, {Wolfgang P} and Rasel, {Ernst M} and Enno Giese",
year = "2019",
month = oct,
day = "11",
doi = "10.48550/arXiv.1905.09102",
language = "English",
volume = "5",
number = "10",

}

Download

TY - JOUR

T1 - Interference of clocks:

T2 - A quantum twin paradox

AU - Loriani, Sina

AU - Friedrich, Alexander

AU - Ufrecht, Christian

AU - Di Pumpo, Fabio

AU - Kleinert, Stephan

AU - Abend, Sven

AU - Gaaloul, Naceur

AU - Meiners, Christian

AU - Schubert, Christian

AU - Tell, Dorothee

AU - Wodey, Étienne

AU - Zych, Magdalena

AU - Ertmer, Wolfgang

AU - Roura, Albert

AU - Schlippert, Dennis

AU - Schleich, Wolfgang P

AU - Rasel, Ernst M

AU - Giese, Enno

PY - 2019/10/11

Y1 - 2019/10/11

N2 - The phase of matter waves depends on proper time and is therefore susceptible to special-relativistic (kinematic) and gravitational (redshift) time dilation. Hence, it is conceivable that atom interferometers measure general-relativistic time-dilation effects. In contrast to this intuition, we show that (i) closed light-pulse interferometers without clock transitions during the pulse sequence are not sensitive to gravitational time dilation in a linear potential. (ii) They can constitute a quantum version of the special-relativistic twin paradox. (iii) Our proposed experimental geometry for a quantum-clock interferometer isolates this effect.

AB - The phase of matter waves depends on proper time and is therefore susceptible to special-relativistic (kinematic) and gravitational (redshift) time dilation. Hence, it is conceivable that atom interferometers measure general-relativistic time-dilation effects. In contrast to this intuition, we show that (i) closed light-pulse interferometers without clock transitions during the pulse sequence are not sensitive to gravitational time dilation in a linear potential. (ii) They can constitute a quantum version of the special-relativistic twin paradox. (iii) Our proposed experimental geometry for a quantum-clock interferometer isolates this effect.

UR - http://www.scopus.com/inward/record.url?scp=85073001654&partnerID=8YFLogxK

U2 - 10.48550/arXiv.1905.09102

DO - 10.48550/arXiv.1905.09102

M3 - Article

C2 - 31620559

VL - 5

JO - Science advances

JF - Science advances

SN - 2375-2548

IS - 10

M1 - eaax8966

ER -