Interaction between left ventricular twist mechanics and arterial haemodynamics during localised, non-metabolic hyperaemia with and without blood flow restriction

Publikation: Beitrag in FachzeitschriftArtikelForschungPeer-Review

Autoren

  • Anke C.C.M. van Mil
  • James Pearson
  • Aimee L. Drane
  • John R. Cockcroft
  • Barry J. Mcdonnell
  • Eric J. Stöhr

Externe Organisationen

  • Cardiff Metropolitan University
  • Radboud Universität Nijmegen (RU)
  • University of Colorado Colorado Springs
  • Cardiff University
Forschungs-netzwerk anzeigen

Details

OriginalspracheEnglisch
Seiten (von - bis)509-520
Seitenumfang12
FachzeitschriftExperimental physiology
Jahrgang101
Ausgabenummer4
Frühes Online-Datum23 Jan. 2016
PublikationsstatusVeröffentlicht - 1 Apr. 2016
Extern publiziertJa

Abstract

New Findings: What is the central question of this study? Left ventricular (LV) twist is reduced when afterload is increased, but the meaning of this specific heart muscle response and its impact on cardiac output are not well understood. What is the main finding and its importance? This study shows that LV twist responds even when arterial haemodynamics are altered only locally, and without apparent change in metabolic (i.e. heat-induced) demand. The concurrent decline in cardiac output and LV twist during partial arterial occlusion despite the increased peripheral demand caused by heat stress suggests that LV twist may be involved in the protective sensing of heart muscle stress that can override the provision of the required cardiac output. Whether left ventricular (LV) twist and untwisting rate (LV twist mechanics) respond to localised, peripheral, non-metabolic changes in arterial haemodynamics within an individual's normal afterload range is presently unknown. Furthermore, previous studies indicate that LV twist mechanics may override the provision of cardiac output, but this hypothesis has not been examined purposefully. Therefore, we acutely altered local peripheral arterial haemodynamics in 11 healthy humans (women/men n = 3/8; age 26 ± 5 years) by bilateral arm heating (BAH). Ultrasonography was used to examine arterial haemodynamics, LV twist mechanics and the twist-to-shortening ratio (TSR). To determine the arterial function-dependent contribution of LV twist mechanics to cardiac output, partial blood flow restriction to the arms was applied during BAH (BAHBFR). Bilateral arm heating increased arm skin temperatures [change (Δ) +6.4 ± 0.9°C, P < 0.0001] but not core temperature (Δ -0.0 ± 0.1°C, P > 0.05), concomitant to increases in brachial artery blood flow (Δ 212 ± 77 ml, P < 0.0001), cardiac output (Δ 495 ± 487 l min-1, P < 0.05), LV twist (Δ 3.0 ± 3.5 deg, P < 0.05) and TSR (Δ 3.3 ± 1.3, P < 0.05) but maintained carotid artery blood flow (Δ 18 ± 147 ml, P > 0.05). Subsequently, BAHBFR reduced all parameters to preheating levels, except for TSR and heart rate, which remained at BAH levels. In conclusion, LV twist mechanics responded to local peripheral arterial haemodynamics within the normal afterload range, in part independent of TSR and heart rate. The findings suggest that LV twist mechanics may be more closely associated with intrinsic sensing of excessive pressure stress rather than being associated with the delivery of adequate cardiac output.

ASJC Scopus Sachgebiete

Zitieren

Interaction between left ventricular twist mechanics and arterial haemodynamics during localised, non-metabolic hyperaemia with and without blood flow restriction. / van Mil, Anke C.C.M.; Pearson, James; Drane, Aimee L. et al.
in: Experimental physiology, Jahrgang 101, Nr. 4, 01.04.2016, S. 509-520.

Publikation: Beitrag in FachzeitschriftArtikelForschungPeer-Review

van Mil ACCM, Pearson J, Drane AL, Cockcroft JR, Mcdonnell BJ, Stöhr EJ. Interaction between left ventricular twist mechanics and arterial haemodynamics during localised, non-metabolic hyperaemia with and without blood flow restriction. Experimental physiology. 2016 Apr 1;101(4):509-520. Epub 2016 Jan 23. doi: 10.1113/EP085623
Download
@article{1cc18232b6124e619af44249266962b0,
title = "Interaction between left ventricular twist mechanics and arterial haemodynamics during localised, non-metabolic hyperaemia with and without blood flow restriction",
abstract = "New Findings: What is the central question of this study? Left ventricular (LV) twist is reduced when afterload is increased, but the meaning of this specific heart muscle response and its impact on cardiac output are not well understood. What is the main finding and its importance? This study shows that LV twist responds even when arterial haemodynamics are altered only locally, and without apparent change in metabolic (i.e. heat-induced) demand. The concurrent decline in cardiac output and LV twist during partial arterial occlusion despite the increased peripheral demand caused by heat stress suggests that LV twist may be involved in the protective sensing of heart muscle stress that can override the provision of the required cardiac output. Whether left ventricular (LV) twist and untwisting rate (LV twist mechanics) respond to localised, peripheral, non-metabolic changes in arterial haemodynamics within an individual's normal afterload range is presently unknown. Furthermore, previous studies indicate that LV twist mechanics may override the provision of cardiac output, but this hypothesis has not been examined purposefully. Therefore, we acutely altered local peripheral arterial haemodynamics in 11 healthy humans (women/men n = 3/8; age 26 ± 5 years) by bilateral arm heating (BAH). Ultrasonography was used to examine arterial haemodynamics, LV twist mechanics and the twist-to-shortening ratio (TSR). To determine the arterial function-dependent contribution of LV twist mechanics to cardiac output, partial blood flow restriction to the arms was applied during BAH (BAHBFR). Bilateral arm heating increased arm skin temperatures [change (Δ) +6.4 ± 0.9°C, P < 0.0001] but not core temperature (Δ -0.0 ± 0.1°C, P > 0.05), concomitant to increases in brachial artery blood flow (Δ 212 ± 77 ml, P < 0.0001), cardiac output (Δ 495 ± 487 l min-1, P < 0.05), LV twist (Δ 3.0 ± 3.5 deg, P < 0.05) and TSR (Δ 3.3 ± 1.3, P < 0.05) but maintained carotid artery blood flow (Δ 18 ± 147 ml, P > 0.05). Subsequently, BAHBFR reduced all parameters to preheating levels, except for TSR and heart rate, which remained at BAH levels. In conclusion, LV twist mechanics responded to local peripheral arterial haemodynamics within the normal afterload range, in part independent of TSR and heart rate. The findings suggest that LV twist mechanics may be more closely associated with intrinsic sensing of excessive pressure stress rather than being associated with the delivery of adequate cardiac output.",
author = "{van Mil}, {Anke C.C.M.} and James Pearson and Drane, {Aimee L.} and Cockcroft, {John R.} and Mcdonnell, {Barry J.} and St{\"o}hr, {Eric J.}",
year = "2016",
month = apr,
day = "1",
doi = "10.1113/EP085623",
language = "English",
volume = "101",
pages = "509--520",
journal = "Experimental physiology",
issn = "0958-0670",
publisher = "Wiley-Blackwell Publishing Ltd",
number = "4",

}

Download

TY - JOUR

T1 - Interaction between left ventricular twist mechanics and arterial haemodynamics during localised, non-metabolic hyperaemia with and without blood flow restriction

AU - van Mil, Anke C.C.M.

AU - Pearson, James

AU - Drane, Aimee L.

AU - Cockcroft, John R.

AU - Mcdonnell, Barry J.

AU - Stöhr, Eric J.

PY - 2016/4/1

Y1 - 2016/4/1

N2 - New Findings: What is the central question of this study? Left ventricular (LV) twist is reduced when afterload is increased, but the meaning of this specific heart muscle response and its impact on cardiac output are not well understood. What is the main finding and its importance? This study shows that LV twist responds even when arterial haemodynamics are altered only locally, and without apparent change in metabolic (i.e. heat-induced) demand. The concurrent decline in cardiac output and LV twist during partial arterial occlusion despite the increased peripheral demand caused by heat stress suggests that LV twist may be involved in the protective sensing of heart muscle stress that can override the provision of the required cardiac output. Whether left ventricular (LV) twist and untwisting rate (LV twist mechanics) respond to localised, peripheral, non-metabolic changes in arterial haemodynamics within an individual's normal afterload range is presently unknown. Furthermore, previous studies indicate that LV twist mechanics may override the provision of cardiac output, but this hypothesis has not been examined purposefully. Therefore, we acutely altered local peripheral arterial haemodynamics in 11 healthy humans (women/men n = 3/8; age 26 ± 5 years) by bilateral arm heating (BAH). Ultrasonography was used to examine arterial haemodynamics, LV twist mechanics and the twist-to-shortening ratio (TSR). To determine the arterial function-dependent contribution of LV twist mechanics to cardiac output, partial blood flow restriction to the arms was applied during BAH (BAHBFR). Bilateral arm heating increased arm skin temperatures [change (Δ) +6.4 ± 0.9°C, P < 0.0001] but not core temperature (Δ -0.0 ± 0.1°C, P > 0.05), concomitant to increases in brachial artery blood flow (Δ 212 ± 77 ml, P < 0.0001), cardiac output (Δ 495 ± 487 l min-1, P < 0.05), LV twist (Δ 3.0 ± 3.5 deg, P < 0.05) and TSR (Δ 3.3 ± 1.3, P < 0.05) but maintained carotid artery blood flow (Δ 18 ± 147 ml, P > 0.05). Subsequently, BAHBFR reduced all parameters to preheating levels, except for TSR and heart rate, which remained at BAH levels. In conclusion, LV twist mechanics responded to local peripheral arterial haemodynamics within the normal afterload range, in part independent of TSR and heart rate. The findings suggest that LV twist mechanics may be more closely associated with intrinsic sensing of excessive pressure stress rather than being associated with the delivery of adequate cardiac output.

AB - New Findings: What is the central question of this study? Left ventricular (LV) twist is reduced when afterload is increased, but the meaning of this specific heart muscle response and its impact on cardiac output are not well understood. What is the main finding and its importance? This study shows that LV twist responds even when arterial haemodynamics are altered only locally, and without apparent change in metabolic (i.e. heat-induced) demand. The concurrent decline in cardiac output and LV twist during partial arterial occlusion despite the increased peripheral demand caused by heat stress suggests that LV twist may be involved in the protective sensing of heart muscle stress that can override the provision of the required cardiac output. Whether left ventricular (LV) twist and untwisting rate (LV twist mechanics) respond to localised, peripheral, non-metabolic changes in arterial haemodynamics within an individual's normal afterload range is presently unknown. Furthermore, previous studies indicate that LV twist mechanics may override the provision of cardiac output, but this hypothesis has not been examined purposefully. Therefore, we acutely altered local peripheral arterial haemodynamics in 11 healthy humans (women/men n = 3/8; age 26 ± 5 years) by bilateral arm heating (BAH). Ultrasonography was used to examine arterial haemodynamics, LV twist mechanics and the twist-to-shortening ratio (TSR). To determine the arterial function-dependent contribution of LV twist mechanics to cardiac output, partial blood flow restriction to the arms was applied during BAH (BAHBFR). Bilateral arm heating increased arm skin temperatures [change (Δ) +6.4 ± 0.9°C, P < 0.0001] but not core temperature (Δ -0.0 ± 0.1°C, P > 0.05), concomitant to increases in brachial artery blood flow (Δ 212 ± 77 ml, P < 0.0001), cardiac output (Δ 495 ± 487 l min-1, P < 0.05), LV twist (Δ 3.0 ± 3.5 deg, P < 0.05) and TSR (Δ 3.3 ± 1.3, P < 0.05) but maintained carotid artery blood flow (Δ 18 ± 147 ml, P > 0.05). Subsequently, BAHBFR reduced all parameters to preheating levels, except for TSR and heart rate, which remained at BAH levels. In conclusion, LV twist mechanics responded to local peripheral arterial haemodynamics within the normal afterload range, in part independent of TSR and heart rate. The findings suggest that LV twist mechanics may be more closely associated with intrinsic sensing of excessive pressure stress rather than being associated with the delivery of adequate cardiac output.

UR - http://www.scopus.com/inward/record.url?scp=84959559844&partnerID=8YFLogxK

U2 - 10.1113/EP085623

DO - 10.1113/EP085623

M3 - Article

C2 - 26800643

AN - SCOPUS:84959559844

VL - 101

SP - 509

EP - 520

JO - Experimental physiology

JF - Experimental physiology

SN - 0958-0670

IS - 4

ER -

Von denselben Autoren