Integro-difference equation for a correlation function of the spin-1/2 Heisenberg XXZ chain

Publikation: Beitrag in FachzeitschriftArtikelForschungPeer-Review

Autoren

  • Fabian H.L. Essler
  • Holger Frahm
  • Alexander R. Its
  • Vladimir E. Korepin

Organisationseinheiten

Externe Organisationen

  • Rheinische Friedrich-Wilhelms-Universität Bonn
  • Indiana University-Purdue
  • Stony Brook University (SBU)
Forschungs-netzwerk anzeigen

Details

OriginalspracheEnglisch
Seiten (von - bis)448-460
Seitenumfang13
FachzeitschriftNuclear Physics, Section B
Jahrgang446
Ausgabenummer3
PublikationsstatusVeröffentlicht - 24 Juli 1995

Abstract

We consider the Ferromagnetic-String-Formation-Probability correlation function (FSFP) for the spin-1/2 Heisenberg XXZ chain. We construct a completely integrable system of integro-difference equations (IDE), which has the FSFP as a τ-function. We derive the associated Riemann-Hilbert problem and obtain the long-distance asymptotics of the FSFP correlator in some limiting cases.

ASJC Scopus Sachgebiete

Zitieren

Integro-difference equation for a correlation function of the spin-1/2 Heisenberg XXZ chain. / Essler, Fabian H.L.; Frahm, Holger; Its, Alexander R. et al.
in: Nuclear Physics, Section B, Jahrgang 446, Nr. 3, 24.07.1995, S. 448-460.

Publikation: Beitrag in FachzeitschriftArtikelForschungPeer-Review

Essler FHL, Frahm H, Its AR, Korepin VE. Integro-difference equation for a correlation function of the spin-1/2 Heisenberg XXZ chain. Nuclear Physics, Section B. 1995 Jul 24;446(3):448-460. doi: 10.1016/0550-3213(95)00263-R
Essler, Fabian H.L. ; Frahm, Holger ; Its, Alexander R. et al. / Integro-difference equation for a correlation function of the spin-1/2 Heisenberg XXZ chain. in: Nuclear Physics, Section B. 1995 ; Jahrgang 446, Nr. 3. S. 448-460.
Download
@article{508a7af1c54543e1b1dcc45f6b6e2872,
title = "Integro-difference equation for a correlation function of the spin-1/2 Heisenberg XXZ chain",
abstract = "We consider the Ferromagnetic-String-Formation-Probability correlation function (FSFP) for the spin-1/2 Heisenberg XXZ chain. We construct a completely integrable system of integro-difference equations (IDE), which has the FSFP as a τ-function. We derive the associated Riemann-Hilbert problem and obtain the long-distance asymptotics of the FSFP correlator in some limiting cases.",
author = "Essler, {Fabian H.L.} and Holger Frahm and Its, {Alexander R.} and Korepin, {Vladimir E.}",
note = "Funding information: We are grateful to the Aspen Center for Physics, where much of this work was performed. EH.L.E. is grateful to the Institute for Theoretical Physics in Stony Brook for hospitality. This work was partially supported by the Deutsche Forschungsgemein-schaft under Grant No. Fr 737/2-1 and by the National Science Foundation (NSF) under Grant Nos. DMS-9315964 and PHY-9321165.",
year = "1995",
month = jul,
day = "24",
doi = "10.1016/0550-3213(95)00263-R",
language = "English",
volume = "446",
pages = "448--460",
journal = "Nuclear Physics, Section B",
issn = "0550-3213",
publisher = "Elsevier",
number = "3",

}

Download

TY - JOUR

T1 - Integro-difference equation for a correlation function of the spin-1/2 Heisenberg XXZ chain

AU - Essler, Fabian H.L.

AU - Frahm, Holger

AU - Its, Alexander R.

AU - Korepin, Vladimir E.

N1 - Funding information: We are grateful to the Aspen Center for Physics, where much of this work was performed. EH.L.E. is grateful to the Institute for Theoretical Physics in Stony Brook for hospitality. This work was partially supported by the Deutsche Forschungsgemein-schaft under Grant No. Fr 737/2-1 and by the National Science Foundation (NSF) under Grant Nos. DMS-9315964 and PHY-9321165.

PY - 1995/7/24

Y1 - 1995/7/24

N2 - We consider the Ferromagnetic-String-Formation-Probability correlation function (FSFP) for the spin-1/2 Heisenberg XXZ chain. We construct a completely integrable system of integro-difference equations (IDE), which has the FSFP as a τ-function. We derive the associated Riemann-Hilbert problem and obtain the long-distance asymptotics of the FSFP correlator in some limiting cases.

AB - We consider the Ferromagnetic-String-Formation-Probability correlation function (FSFP) for the spin-1/2 Heisenberg XXZ chain. We construct a completely integrable system of integro-difference equations (IDE), which has the FSFP as a τ-function. We derive the associated Riemann-Hilbert problem and obtain the long-distance asymptotics of the FSFP correlator in some limiting cases.

U2 - 10.1016/0550-3213(95)00263-R

DO - 10.1016/0550-3213(95)00263-R

M3 - Article

AN - SCOPUS:0011737410

VL - 446

SP - 448

EP - 460

JO - Nuclear Physics, Section B

JF - Nuclear Physics, Section B

SN - 0550-3213

IS - 3

ER -

Von denselben Autoren