Details
Originalsprache | Englisch |
---|---|
Seiten (von - bis) | 633-637 |
Seitenumfang | 5 |
Fachzeitschrift | Microelectronics journal |
Jahrgang | 40 |
Ausgabenummer | 3 |
Frühes Online-Datum | 25 Juli 2008 |
Publikationsstatus | Veröffentlicht - März 2009 |
Abstract
In this work we show that by efficiently exploiting the growth kinetics during molecular beam epitaxy (MBE) one could create Si nanostructures of different dimensions. Examples are Si quantum dots (QD) or quantum wells (QW), which are buried into an epitaxial rare-earth oxide, e.g. Gd2O3. Electrical measurements carried out on Pt/Gd2O3/Si MOS capacitors comprised with Si-QD demonstrate that such well embedded Si-QD with average size of 5 nm and density of 2×1012 cm-2 exhibit very good charge storage capacity with suitable retention (∼105 s) and endurance (∼105 write/erase cycles) characteristics. The Pt/Gd2O3/Si (metal-oxide-semiconductor (MOS)) basic memory cells with embedded Si-QD display large programming window (∼1.5-2 V) and fast writing speed and hence could be a potential candidate for future non-volatile memory application. The optical absorption of such Si-QD embedded into epitaxial Gd2O3 was found to exhibit a spectral threshold maximum up to 2.9±0.1 eV depending on their sizes, inferring a significant influence of quantum confinement on the QD/oxide interface band diagram. Ultra-thin single-crystalline Si-QW with epitaxial insulator (Gd2O3) as the barrier layers were grown by a novel approach based on cooperative vapor phase MBE on Si wafer with sharp interfaces between well and barriers. The current-voltage characteristics obtained for such structure exhibits negative differential resistance at lower temperature, making them a good candidate for resonant tunneling devices.
ASJC Scopus Sachgebiete
- Werkstoffwissenschaften (insg.)
- Elektronische, optische und magnetische Materialien
- Physik und Astronomie (insg.)
- Atom- und Molekularphysik sowie Optik
- Physik und Astronomie (insg.)
- Physik der kondensierten Materie
- Werkstoffwissenschaften (insg.)
- Oberflächen, Beschichtungen und Folien
- Ingenieurwesen (insg.)
- Elektrotechnik und Elektronik
Zitieren
- Standard
- Harvard
- Apa
- Vancouver
- BibTex
- RIS
in: Microelectronics journal, Jahrgang 40, Nr. 3, 03.2009, S. 633-637.
Publikation: Beitrag in Fachzeitschrift › Artikel › Forschung › Peer-Review
}
TY - JOUR
T1 - Integration of low dimensional crystalline Si into functional epitaxial oxides
AU - Laha, Apurba
AU - Bugiel, E.
AU - Dargis, R.
AU - Schwendt, D.
AU - Badylevich, M.
AU - Afanas'ev, V. V.
AU - Stesmans, A.
AU - Fissel, A.
AU - Osten, H. J.
PY - 2009/3
Y1 - 2009/3
N2 - In this work we show that by efficiently exploiting the growth kinetics during molecular beam epitaxy (MBE) one could create Si nanostructures of different dimensions. Examples are Si quantum dots (QD) or quantum wells (QW), which are buried into an epitaxial rare-earth oxide, e.g. Gd2O3. Electrical measurements carried out on Pt/Gd2O3/Si MOS capacitors comprised with Si-QD demonstrate that such well embedded Si-QD with average size of 5 nm and density of 2×1012 cm-2 exhibit very good charge storage capacity with suitable retention (∼105 s) and endurance (∼105 write/erase cycles) characteristics. The Pt/Gd2O3/Si (metal-oxide-semiconductor (MOS)) basic memory cells with embedded Si-QD display large programming window (∼1.5-2 V) and fast writing speed and hence could be a potential candidate for future non-volatile memory application. The optical absorption of such Si-QD embedded into epitaxial Gd2O3 was found to exhibit a spectral threshold maximum up to 2.9±0.1 eV depending on their sizes, inferring a significant influence of quantum confinement on the QD/oxide interface band diagram. Ultra-thin single-crystalline Si-QW with epitaxial insulator (Gd2O3) as the barrier layers were grown by a novel approach based on cooperative vapor phase MBE on Si wafer with sharp interfaces between well and barriers. The current-voltage characteristics obtained for such structure exhibits negative differential resistance at lower temperature, making them a good candidate for resonant tunneling devices.
AB - In this work we show that by efficiently exploiting the growth kinetics during molecular beam epitaxy (MBE) one could create Si nanostructures of different dimensions. Examples are Si quantum dots (QD) or quantum wells (QW), which are buried into an epitaxial rare-earth oxide, e.g. Gd2O3. Electrical measurements carried out on Pt/Gd2O3/Si MOS capacitors comprised with Si-QD demonstrate that such well embedded Si-QD with average size of 5 nm and density of 2×1012 cm-2 exhibit very good charge storage capacity with suitable retention (∼105 s) and endurance (∼105 write/erase cycles) characteristics. The Pt/Gd2O3/Si (metal-oxide-semiconductor (MOS)) basic memory cells with embedded Si-QD display large programming window (∼1.5-2 V) and fast writing speed and hence could be a potential candidate for future non-volatile memory application. The optical absorption of such Si-QD embedded into epitaxial Gd2O3 was found to exhibit a spectral threshold maximum up to 2.9±0.1 eV depending on their sizes, inferring a significant influence of quantum confinement on the QD/oxide interface band diagram. Ultra-thin single-crystalline Si-QW with epitaxial insulator (Gd2O3) as the barrier layers were grown by a novel approach based on cooperative vapor phase MBE on Si wafer with sharp interfaces between well and barriers. The current-voltage characteristics obtained for such structure exhibits negative differential resistance at lower temperature, making them a good candidate for resonant tunneling devices.
KW - Epitaxial gadolinium oxide
KW - Nonvolatile memories
KW - Oxide-semiconductor-oxide quantum well
KW - Resonant tunneling diode
KW - Si quantum dots
UR - http://www.scopus.com/inward/record.url?scp=61349192163&partnerID=8YFLogxK
U2 - 10.1016/j.mejo.2008.06.064
DO - 10.1016/j.mejo.2008.06.064
M3 - Article
AN - SCOPUS:61349192163
VL - 40
SP - 633
EP - 637
JO - Microelectronics journal
JF - Microelectronics journal
SN - 0026-2692
IS - 3
ER -