Details
Originalsprache | Englisch |
---|---|
Seitenumfang | 32 |
Publikationsstatus | Elektronisch veröffentlicht (E-Pub) - 24 Juli 2023 |
Abstract
Fachgebiet (basierend auf ÖFOS 2012)
- NATURWISSENSCHAFTEN
- Mathematik
- Mathematik
- Zahlentheorie
Zitieren
- Standard
- Harvard
- Apa
- Vancouver
- BibTex
- RIS
2023.
Publikation: Arbeitspapier/Preprint › Preprint
}
TY - UNPB
T1 - Integral Points on a del Pezzo Surface over Imaginary Quadratic Fields
AU - Ortmann, Judith Lena
N1 - 32 pages
PY - 2023/7/24
Y1 - 2023/7/24
N2 - We characterise integral points of bounded log-anticanonical height on a quartic del Pezzo surface of singularity type $\mathbf{A}_3$ over imaginary quadratic fields with respect to its singularity and its lines. Furthermore, we count these integral points of bounded height by using universal torsors and interpret the count geometrically to prove an analogue of Manin's conjecture for the set of integral points with respect to the singularity and to a line.
AB - We characterise integral points of bounded log-anticanonical height on a quartic del Pezzo surface of singularity type $\mathbf{A}_3$ over imaginary quadratic fields with respect to its singularity and its lines. Furthermore, we count these integral points of bounded height by using universal torsors and interpret the count geometrically to prove an analogue of Manin's conjecture for the set of integral points with respect to the singularity and to a line.
KW - math.NT
KW - math.AG
KW - 11D45 (Primary) 11G35, 11R11, 14G05, 14J26 (Secondary)
M3 - Preprint
BT - Integral Points on a del Pezzo Surface over Imaginary Quadratic Fields
ER -