Details
Originalsprache | Englisch |
---|---|
Seiten (von - bis) | 231-247 |
Seitenumfang | 17 |
Fachzeitschrift | Letters in mathematical physics |
Jahrgang | 89 |
Ausgabenummer | 3 |
Publikationsstatus | Veröffentlicht - Okt. 2009 |
Abstract
We consider the Yang-Mills flow equations on a reductive coset space G/H and the Yang-Mills equations on the manifold ℝ×G/H. On non-symmetric coset spaces G/H one can introduce geometric fluxes identified with the torsion of the spin connection. The condition of G-equivariance imposed on the gauge fields reduces the Yang-Mills equations to Φ4-kink equations on ℝ. Depending on the boundary conditions and torsion, we obtain solutions to the Yang-Mills equations describing instantons, chains of instanton-anti-instanton pairs or modifications of gauge bundles. For Lorentzian signature on ℝ×G/H, dyon-type configurations are constructed as well. We also present explicit solutions to the Yang-Mills flow equations and compare them with the Yang-Mills solutions on ℝ×G/H.
ASJC Scopus Sachgebiete
- Physik und Astronomie (insg.)
- Statistische und nichtlineare Physik
- Mathematik (insg.)
- Mathematische Physik
Zitieren
- Standard
- Harvard
- Apa
- Vancouver
- BibTex
- RIS
in: Letters in mathematical physics, Jahrgang 89, Nr. 3, 10.2009, S. 231-247.
Publikation: Beitrag in Fachzeitschrift › Artikel › Forschung › Peer-Review
}
TY - JOUR
T1 - Instantons and Yang-Mills flows on coset spaces
AU - Ivanova, Tatiana A.
AU - Lechtenfeld, Olaf
AU - Popov, Alexander D.
AU - Rahn, Thorsten
N1 - Funding Information: This work was supported in part by the cluster of excellence EXC 201 “Quantum Engineering and Space-Time Research”, by the Deutsche Forschungsgemeins-chaft (DFG) and by the Heisenberg-Landau program. The work of T.A.I. and A.D.P. was partially supported by the Russian Foundation for Basic Research (grant RFBR 09-02-91347). Copyright: Copyright 2009 Elsevier B.V., All rights reserved.
PY - 2009/10
Y1 - 2009/10
N2 - We consider the Yang-Mills flow equations on a reductive coset space G/H and the Yang-Mills equations on the manifold ℝ×G/H. On non-symmetric coset spaces G/H one can introduce geometric fluxes identified with the torsion of the spin connection. The condition of G-equivariance imposed on the gauge fields reduces the Yang-Mills equations to Φ4-kink equations on ℝ. Depending on the boundary conditions and torsion, we obtain solutions to the Yang-Mills equations describing instantons, chains of instanton-anti-instanton pairs or modifications of gauge bundles. For Lorentzian signature on ℝ×G/H, dyon-type configurations are constructed as well. We also present explicit solutions to the Yang-Mills flow equations and compare them with the Yang-Mills solutions on ℝ×G/H.
AB - We consider the Yang-Mills flow equations on a reductive coset space G/H and the Yang-Mills equations on the manifold ℝ×G/H. On non-symmetric coset spaces G/H one can introduce geometric fluxes identified with the torsion of the spin connection. The condition of G-equivariance imposed on the gauge fields reduces the Yang-Mills equations to Φ4-kink equations on ℝ. Depending on the boundary conditions and torsion, we obtain solutions to the Yang-Mills equations describing instantons, chains of instanton-anti-instanton pairs or modifications of gauge bundles. For Lorentzian signature on ℝ×G/H, dyon-type configurations are constructed as well. We also present explicit solutions to the Yang-Mills flow equations and compare them with the Yang-Mills solutions on ℝ×G/H.
KW - Flows
KW - Kinks
KW - Yang-Mills instantons
UR - http://www.scopus.com/inward/record.url?scp=70350411871&partnerID=8YFLogxK
U2 - 10.1007/s11005-009-0336-1
DO - 10.1007/s11005-009-0336-1
M3 - Article
AN - SCOPUS:70350411871
VL - 89
SP - 231
EP - 247
JO - Letters in mathematical physics
JF - Letters in mathematical physics
SN - 0377-9017
IS - 3
ER -