Details
Originalsprache | Englisch |
---|---|
Seitenumfang | 9 |
Fachzeitschrift | SAE Technical Papers |
Jahrgang | 2019 |
Ausgabenummer | January |
Publikationsstatus | Veröffentlicht - 15 Jan. 2019 |
Veranstaltung | SAE 2019 International Powertrains, Fuels and Lubricants Meeting, FFL 2019 - San Antonio, USA / Vereinigte Staaten Dauer: 22 Jan. 2019 → 24 Jan. 2019 |
Abstract
In 2016, the latest step of emission standards for marine ships came into operation. As the emission limit for nitric oxides has decreased to approximately 25% of the former values, selective catalytic reduction (SCR) will play an important role to fulfil those limits. SCR is an established method in the field of trucks and heavy diesel cars, but applying it to ships requires further research and development. The demands on ship engines are different, not only due to the large scales but also because the engineering process is strongly based on numerical simulations. To allow the validation of simulations at well-defined conditions and to investigate the fundamental processes, e.g. of the injection of urea solution for marine applications, a high pressure hot gas test rig was built up at the ITV. The current work focuses on the injection of urea solution by an air-blast atomizer. The spray breakup is the initial part of the urea decomposition, which is why reliable validation data is needed for modelling and simulating the respective spray and chemical processes. Therefore, the role of the atomization air flow rate in combination with different hot gas pressures was studied. The pressure influence is of particular interest, due to the possibility to install an SCR-system upstream the turbocharger of a marine engine. High speed shadowgraphy was applied to investigate the primary breakup of the urea spray. The breakup phenomena are discussed and combined with droplet spectra, which were measured by phase-Doppler anemometry (PDA). Apart from obtaining validation data, the study gives answers to the guiding question how to obtain acceptably fine sprays by using minimal atomization air under various circumstances.
ASJC Scopus Sachgebiete
- Ingenieurwesen (insg.)
- Fahrzeugbau
- Ingenieurwesen (insg.)
- Sicherheit, Risiko, Zuverlässigkeit und Qualität
- Umweltwissenschaften (insg.)
- Umweltverschmutzung
- Ingenieurwesen (insg.)
- Wirtschaftsingenieurwesen und Fertigungstechnik
Zitieren
- Standard
- Harvard
- Apa
- Vancouver
- BibTex
- RIS
in: SAE Technical Papers, Jahrgang 2019, Nr. January, 15.01.2019.
Publikation: Beitrag in Fachzeitschrift › Konferenzaufsatz in Fachzeitschrift › Forschung › Peer-Review
}
TY - JOUR
T1 - Influence of the Backpressure on Urea Sprays Generated by an Air-Blast Atomizer for Large-Scale SCR-Applications
AU - Höltermann, Markus
AU - Wichmar, Jan
AU - Dinkelacker, Friedrich
N1 - Funding information: This project has received funding from the European Union’s Horizon 2020 research and innovation program under grant agreement No 634135.
PY - 2019/1/15
Y1 - 2019/1/15
N2 - In 2016, the latest step of emission standards for marine ships came into operation. As the emission limit for nitric oxides has decreased to approximately 25% of the former values, selective catalytic reduction (SCR) will play an important role to fulfil those limits. SCR is an established method in the field of trucks and heavy diesel cars, but applying it to ships requires further research and development. The demands on ship engines are different, not only due to the large scales but also because the engineering process is strongly based on numerical simulations. To allow the validation of simulations at well-defined conditions and to investigate the fundamental processes, e.g. of the injection of urea solution for marine applications, a high pressure hot gas test rig was built up at the ITV. The current work focuses on the injection of urea solution by an air-blast atomizer. The spray breakup is the initial part of the urea decomposition, which is why reliable validation data is needed for modelling and simulating the respective spray and chemical processes. Therefore, the role of the atomization air flow rate in combination with different hot gas pressures was studied. The pressure influence is of particular interest, due to the possibility to install an SCR-system upstream the turbocharger of a marine engine. High speed shadowgraphy was applied to investigate the primary breakup of the urea spray. The breakup phenomena are discussed and combined with droplet spectra, which were measured by phase-Doppler anemometry (PDA). Apart from obtaining validation data, the study gives answers to the guiding question how to obtain acceptably fine sprays by using minimal atomization air under various circumstances.
AB - In 2016, the latest step of emission standards for marine ships came into operation. As the emission limit for nitric oxides has decreased to approximately 25% of the former values, selective catalytic reduction (SCR) will play an important role to fulfil those limits. SCR is an established method in the field of trucks and heavy diesel cars, but applying it to ships requires further research and development. The demands on ship engines are different, not only due to the large scales but also because the engineering process is strongly based on numerical simulations. To allow the validation of simulations at well-defined conditions and to investigate the fundamental processes, e.g. of the injection of urea solution for marine applications, a high pressure hot gas test rig was built up at the ITV. The current work focuses on the injection of urea solution by an air-blast atomizer. The spray breakup is the initial part of the urea decomposition, which is why reliable validation data is needed for modelling and simulating the respective spray and chemical processes. Therefore, the role of the atomization air flow rate in combination with different hot gas pressures was studied. The pressure influence is of particular interest, due to the possibility to install an SCR-system upstream the turbocharger of a marine engine. High speed shadowgraphy was applied to investigate the primary breakup of the urea spray. The breakup phenomena are discussed and combined with droplet spectra, which were measured by phase-Doppler anemometry (PDA). Apart from obtaining validation data, the study gives answers to the guiding question how to obtain acceptably fine sprays by using minimal atomization air under various circumstances.
UR - http://www.scopus.com/inward/record.url?scp=85060546122&partnerID=8YFLogxK
U2 - 10.4271/2019-01-0046
DO - 10.4271/2019-01-0046
M3 - Conference article
AN - SCOPUS:85060546122
VL - 2019
JO - SAE Technical Papers
JF - SAE Technical Papers
SN - 0148-7191
IS - January
T2 - SAE 2019 International Powertrains, Fuels and Lubricants Meeting, FFL 2019
Y2 - 22 January 2019 through 24 January 2019
ER -