Details
Originalsprache | Englisch |
---|---|
Aufsatznummer | 045 |
Seiten (von - bis) | 3999-4010 |
Seitenumfang | 12 |
Fachzeitschrift | Journal of Physics A: Mathematical and General |
Jahrgang | 27 |
Ausgabenummer | 11 |
Publikationsstatus | Veröffentlicht - 1994 |
Extern publiziert | Ja |
Abstract
We have generalized recent results on the integer quantum Hall effect, constructing explicitly a W1+ infinity for the fractional quantum Hall effect such that the negative modes annihilate the Laughlin wavefunctions. This generalization has a nice interpretation in Jain's composite-fermion theory. Furthermore, for these models, we have calculated the wavefunctions of the edge excitations, viewing them as area-preserving deformations of an incompressible quantum droplet and have shown that the W1+ infinity is the underlying symmetry of the edge excitations in the fractional quantum Hall effect. Finally, we have applied this method to more general wavefunctions.
ASJC Scopus Sachgebiete
- Physik und Astronomie (insg.)
- Statistische und nichtlineare Physik
- Mathematik (insg.)
- Mathematische Physik
- Physik und Astronomie (insg.)
- Allgemeine Physik und Astronomie
Zitieren
- Standard
- Harvard
- Apa
- Vancouver
- BibTex
- RIS
in: Journal of Physics A: Mathematical and General, Jahrgang 27, Nr. 11, 045, 1994, S. 3999-4010.
Publikation: Beitrag in Fachzeitschrift › Artikel › Forschung › Peer-Review
}
TY - JOUR
T1 - Infinite symmetry in the fractional quantum Hall effect
AU - Flohr, M.
AU - Varnhagen, R.
PY - 1994
Y1 - 1994
N2 - We have generalized recent results on the integer quantum Hall effect, constructing explicitly a W1+ infinity for the fractional quantum Hall effect such that the negative modes annihilate the Laughlin wavefunctions. This generalization has a nice interpretation in Jain's composite-fermion theory. Furthermore, for these models, we have calculated the wavefunctions of the edge excitations, viewing them as area-preserving deformations of an incompressible quantum droplet and have shown that the W1+ infinity is the underlying symmetry of the edge excitations in the fractional quantum Hall effect. Finally, we have applied this method to more general wavefunctions.
AB - We have generalized recent results on the integer quantum Hall effect, constructing explicitly a W1+ infinity for the fractional quantum Hall effect such that the negative modes annihilate the Laughlin wavefunctions. This generalization has a nice interpretation in Jain's composite-fermion theory. Furthermore, for these models, we have calculated the wavefunctions of the edge excitations, viewing them as area-preserving deformations of an incompressible quantum droplet and have shown that the W1+ infinity is the underlying symmetry of the edge excitations in the fractional quantum Hall effect. Finally, we have applied this method to more general wavefunctions.
UR - http://www.scopus.com/inward/record.url?scp=21344494060&partnerID=8YFLogxK
U2 - 10.48550/arXiv.hep-th/9309083
DO - 10.48550/arXiv.hep-th/9309083
M3 - Article
AN - SCOPUS:21344494060
VL - 27
SP - 3999
EP - 4010
JO - Journal of Physics A: Mathematical and General
JF - Journal of Physics A: Mathematical and General
SN - 0305-4470
IS - 11
M1 - 045
ER -