Inequalities expressing the Pauli principle for generalized observables

Publikation: Beitrag in Buch/Bericht/Sammelwerk/KonferenzbandBeitrag in Buch/SammelwerkForschungPeer-Review

Autoren

Organisationseinheiten

Forschungs-netzwerk anzeigen

Details

OriginalspracheEnglisch
Titel des SammelwerksMathematical methods in statistical mechanics (Leuven, 1988)
Herausgeber/-innenMark Fannes, André Verbeure
ErscheinungsortLeuven
Seiten179-196
Seitenumfang18
Band1
PublikationsstatusVeröffentlicht - 1989

Publikationsreihe

NameLeuven Notes Math. Theoret. Phys. Ser. A Math. Phys.
Herausgeber (Verlag)Leuven Univ. Press

Abstract

We define the second quantization of generalized observables, i.e. observables described by positive operator valued rather than projection valued measures. Given any such observable in the one-particle Hilbert space, this procedure yields a generalized observable in a many-particle system of Bosons or Fermions. This generalization of the usual construction is used to define obervables corresponding to the density of systems in one-particle phase space (i.e. a Boltzmann density), from the (never projection valued) observables localizing a particle in phase space. In this framework the Pauli principle takes the form of an inequality for the distribution of the particle number in a given region in phase space. Arbitrarily high occupation numbers may occur, but the probability of finding more than one particle per normalized phase space volume decreases very rapidly.

Zitieren

Inequalities expressing the Pauli principle for generalized observables. / Werner, R. F.
Mathematical methods in statistical mechanics (Leuven, 1988). Hrsg. / Mark Fannes; André Verbeure. Band 1 Leuven, 1989. S. 179-196 (Leuven Notes Math. Theoret. Phys. Ser. A Math. Phys.).

Publikation: Beitrag in Buch/Bericht/Sammelwerk/KonferenzbandBeitrag in Buch/SammelwerkForschungPeer-Review

Werner, RF 1989, Inequalities expressing the Pauli principle for generalized observables. in M Fannes & A Verbeure (Hrsg.), Mathematical methods in statistical mechanics (Leuven, 1988). Bd. 1, Leuven Notes Math. Theoret. Phys. Ser. A Math. Phys., Leuven, S. 179-196.
Werner, R. F. (1989). Inequalities expressing the Pauli principle for generalized observables. In M. Fannes, & A. Verbeure (Hrsg.), Mathematical methods in statistical mechanics (Leuven, 1988) (Band 1, S. 179-196). (Leuven Notes Math. Theoret. Phys. Ser. A Math. Phys.)..
Werner RF. Inequalities expressing the Pauli principle for generalized observables. in Fannes M, Verbeure A, Hrsg., Mathematical methods in statistical mechanics (Leuven, 1988). Band 1. Leuven. 1989. S. 179-196. (Leuven Notes Math. Theoret. Phys. Ser. A Math. Phys.).
Werner, R. F. / Inequalities expressing the Pauli principle for generalized observables. Mathematical methods in statistical mechanics (Leuven, 1988). Hrsg. / Mark Fannes ; André Verbeure. Band 1 Leuven, 1989. S. 179-196 (Leuven Notes Math. Theoret. Phys. Ser. A Math. Phys.).
Download
@inbook{8b9b4c6dd1554d9db9aec71e6003ef00,
title = "Inequalities expressing the Pauli principle for generalized observables",
abstract = "We define the second quantization of generalized observables, i.e. observables described by positive operator valued rather than projection valued measures. Given any such observable in the one-particle Hilbert space, this procedure yields a generalized observable in a many-particle system of Bosons or Fermions. This generalization of the usual construction is used to define obervables corresponding to the density of systems in one-particle phase space (i.e. a Boltzmann density), from the (never projection valued) observables localizing a particle in phase space. In this framework the Pauli principle takes the form of an inequality for the distribution of the particle number in a given region in phase space. Arbitrarily high occupation numbers may occur, but the probability of finding more than one particle per normalized phase space volume decreases very rapidly.",
author = "Werner, {R. F.}",
year = "1989",
language = "English",
volume = "1",
series = "Leuven Notes Math. Theoret. Phys. Ser. A Math. Phys.",
publisher = "Leuven Univ. Press",
pages = "179--196",
editor = "Mark Fannes and Andr{\'e} Verbeure",
booktitle = "Mathematical methods in statistical mechanics (Leuven, 1988)",

}

Download

TY - CHAP

T1 - Inequalities expressing the Pauli principle for generalized observables

AU - Werner, R. F.

PY - 1989

Y1 - 1989

N2 - We define the second quantization of generalized observables, i.e. observables described by positive operator valued rather than projection valued measures. Given any such observable in the one-particle Hilbert space, this procedure yields a generalized observable in a many-particle system of Bosons or Fermions. This generalization of the usual construction is used to define obervables corresponding to the density of systems in one-particle phase space (i.e. a Boltzmann density), from the (never projection valued) observables localizing a particle in phase space. In this framework the Pauli principle takes the form of an inequality for the distribution of the particle number in a given region in phase space. Arbitrarily high occupation numbers may occur, but the probability of finding more than one particle per normalized phase space volume decreases very rapidly.

AB - We define the second quantization of generalized observables, i.e. observables described by positive operator valued rather than projection valued measures. Given any such observable in the one-particle Hilbert space, this procedure yields a generalized observable in a many-particle system of Bosons or Fermions. This generalization of the usual construction is used to define obervables corresponding to the density of systems in one-particle phase space (i.e. a Boltzmann density), from the (never projection valued) observables localizing a particle in phase space. In this framework the Pauli principle takes the form of an inequality for the distribution of the particle number in a given region in phase space. Arbitrarily high occupation numbers may occur, but the probability of finding more than one particle per normalized phase space volume decreases very rapidly.

M3 - Contribution to book/anthology

VL - 1

T3 - Leuven Notes Math. Theoret. Phys. Ser. A Math. Phys.

SP - 179

EP - 196

BT - Mathematical methods in statistical mechanics (Leuven, 1988)

A2 - Fannes, Mark

A2 - Verbeure, André

CY - Leuven

ER -

Von denselben Autoren