Details
Originalsprache | Englisch |
---|---|
Titel des Sammelwerks | Mathematical methods in statistical mechanics (Leuven, 1988) |
Herausgeber/-innen | Mark Fannes, André Verbeure |
Erscheinungsort | Leuven |
Seiten | 179-196 |
Seitenumfang | 18 |
Band | 1 |
Publikationsstatus | Veröffentlicht - 1989 |
Publikationsreihe
Name | Leuven Notes Math. Theoret. Phys. Ser. A Math. Phys. |
---|---|
Herausgeber (Verlag) | Leuven Univ. Press |
Abstract
Zitieren
- Standard
- Harvard
- Apa
- Vancouver
- BibTex
- RIS
Mathematical methods in statistical mechanics (Leuven, 1988). Hrsg. / Mark Fannes; André Verbeure. Band 1 Leuven, 1989. S. 179-196 (Leuven Notes Math. Theoret. Phys. Ser. A Math. Phys.).
Publikation: Beitrag in Buch/Bericht/Sammelwerk/Konferenzband › Beitrag in Buch/Sammelwerk › Forschung › Peer-Review
}
TY - CHAP
T1 - Inequalities expressing the Pauli principle for generalized observables
AU - Werner, R. F.
PY - 1989
Y1 - 1989
N2 - We define the second quantization of generalized observables, i.e. observables described by positive operator valued rather than projection valued measures. Given any such observable in the one-particle Hilbert space, this procedure yields a generalized observable in a many-particle system of Bosons or Fermions. This generalization of the usual construction is used to define obervables corresponding to the density of systems in one-particle phase space (i.e. a Boltzmann density), from the (never projection valued) observables localizing a particle in phase space. In this framework the Pauli principle takes the form of an inequality for the distribution of the particle number in a given region in phase space. Arbitrarily high occupation numbers may occur, but the probability of finding more than one particle per normalized phase space volume decreases very rapidly.
AB - We define the second quantization of generalized observables, i.e. observables described by positive operator valued rather than projection valued measures. Given any such observable in the one-particle Hilbert space, this procedure yields a generalized observable in a many-particle system of Bosons or Fermions. This generalization of the usual construction is used to define obervables corresponding to the density of systems in one-particle phase space (i.e. a Boltzmann density), from the (never projection valued) observables localizing a particle in phase space. In this framework the Pauli principle takes the form of an inequality for the distribution of the particle number in a given region in phase space. Arbitrarily high occupation numbers may occur, but the probability of finding more than one particle per normalized phase space volume decreases very rapidly.
M3 - Contribution to book/anthology
VL - 1
T3 - Leuven Notes Math. Theoret. Phys. Ser. A Math. Phys.
SP - 179
EP - 196
BT - Mathematical methods in statistical mechanics (Leuven, 1988)
A2 - Fannes, Mark
A2 - Verbeure, André
CY - Leuven
ER -