Index theory for boundary value problems via continuous fields of C*-algebras

Publikation: Beitrag in FachzeitschriftArtikelForschungPeer-Review

Autoren

Organisationseinheiten

Externe Organisationen

  • Københavns Universitet
  • Westfälische Wilhelms-Universität Münster (WWU)
Forschungs-netzwerk anzeigen

Details

OriginalspracheEnglisch
Seiten (von - bis)2645-2692
Seitenumfang48
FachzeitschriftJournal of functional analysis
Jahrgang257
Ausgabenummer8
PublikationsstatusVeröffentlicht - 15 Okt. 2009

Abstract

We prove an index theorem for boundary value problems in Boutet de Monvel's calculus on a compact manifold X with boundary. The basic tool is the tangent semi-groupoid T- X generalizing the tangent groupoid defined by Connes in the boundaryless case, and an associated continuous field Cr* (T- X) of C*-algebras over [0, 1]. Its fiber in ℏ = 0, Cr* (T- X), can be identified with the symbol algebra for Boutet de Monvel's calculus; for ℏ ≠ 0 the fibers are isomorphic to the algebra K of compact operators. We therefore obtain a natural map K0 (Cr* (T- X)) = K0 (C0 (T* X)) → K0 (K) = Z. Using deformation theory we show that this is the analytic index map. On the other hand, using ideas from noncommutative geometry, we construct the topological index map and prove that it coincides with the analytic index map.

ASJC Scopus Sachgebiete

Zitieren

Index theory for boundary value problems via continuous fields of C*-algebras. / Aastrup, Johannes; Nest, Ryszard; Schrohe, Elmar.
in: Journal of functional analysis, Jahrgang 257, Nr. 8, 15.10.2009, S. 2645-2692.

Publikation: Beitrag in FachzeitschriftArtikelForschungPeer-Review

Aastrup J, Nest R, Schrohe E. Index theory for boundary value problems via continuous fields of C*-algebras. Journal of functional analysis. 2009 Okt 15;257(8):2645-2692. doi: 10.1016/j.jfa.2009.04.019
Aastrup, Johannes ; Nest, Ryszard ; Schrohe, Elmar. / Index theory for boundary value problems via continuous fields of C*-algebras. in: Journal of functional analysis. 2009 ; Jahrgang 257, Nr. 8. S. 2645-2692.
Download
@article{ebb304adabcb405097dcfbf243e80aff,
title = "Index theory for boundary value problems via continuous fields of C*-algebras",
abstract = "We prove an index theorem for boundary value problems in Boutet de Monvel's calculus on a compact manifold X with boundary. The basic tool is the tangent semi-groupoid T- X generalizing the tangent groupoid defined by Connes in the boundaryless case, and an associated continuous field Cr* (T- X) of C*-algebras over [0, 1]. Its fiber in ℏ = 0, Cr* (T- X), can be identified with the symbol algebra for Boutet de Monvel's calculus; for ℏ ≠ 0 the fibers are isomorphic to the algebra K of compact operators. We therefore obtain a natural map K0 (Cr* (T- X)) = K0 (C0 (T* X)) → K0 (K) = Z. Using deformation theory we show that this is the analytic index map. On the other hand, using ideas from noncommutative geometry, we construct the topological index map and prove that it coincides with the analytic index map.",
keywords = "Boundary value problems, Continuous fields of C-algebras, Groupoids, Index theory",
author = "Johannes Aastrup and Ryszard Nest and Elmar Schrohe",
note = "Funding Information: J. Aastrup and E. Schrohe gratefully acknowledge the support of Deutsche Forschungsge-meinschaft (DFG). Copyright: Copyright 2009 Elsevier B.V., All rights reserved.",
year = "2009",
month = oct,
day = "15",
doi = "10.1016/j.jfa.2009.04.019",
language = "English",
volume = "257",
pages = "2645--2692",
journal = "Journal of functional analysis",
issn = "0022-1236",
publisher = "Academic Press Inc.",
number = "8",

}

Download

TY - JOUR

T1 - Index theory for boundary value problems via continuous fields of C*-algebras

AU - Aastrup, Johannes

AU - Nest, Ryszard

AU - Schrohe, Elmar

N1 - Funding Information: J. Aastrup and E. Schrohe gratefully acknowledge the support of Deutsche Forschungsge-meinschaft (DFG). Copyright: Copyright 2009 Elsevier B.V., All rights reserved.

PY - 2009/10/15

Y1 - 2009/10/15

N2 - We prove an index theorem for boundary value problems in Boutet de Monvel's calculus on a compact manifold X with boundary. The basic tool is the tangent semi-groupoid T- X generalizing the tangent groupoid defined by Connes in the boundaryless case, and an associated continuous field Cr* (T- X) of C*-algebras over [0, 1]. Its fiber in ℏ = 0, Cr* (T- X), can be identified with the symbol algebra for Boutet de Monvel's calculus; for ℏ ≠ 0 the fibers are isomorphic to the algebra K of compact operators. We therefore obtain a natural map K0 (Cr* (T- X)) = K0 (C0 (T* X)) → K0 (K) = Z. Using deformation theory we show that this is the analytic index map. On the other hand, using ideas from noncommutative geometry, we construct the topological index map and prove that it coincides with the analytic index map.

AB - We prove an index theorem for boundary value problems in Boutet de Monvel's calculus on a compact manifold X with boundary. The basic tool is the tangent semi-groupoid T- X generalizing the tangent groupoid defined by Connes in the boundaryless case, and an associated continuous field Cr* (T- X) of C*-algebras over [0, 1]. Its fiber in ℏ = 0, Cr* (T- X), can be identified with the symbol algebra for Boutet de Monvel's calculus; for ℏ ≠ 0 the fibers are isomorphic to the algebra K of compact operators. We therefore obtain a natural map K0 (Cr* (T- X)) = K0 (C0 (T* X)) → K0 (K) = Z. Using deformation theory we show that this is the analytic index map. On the other hand, using ideas from noncommutative geometry, we construct the topological index map and prove that it coincides with the analytic index map.

KW - Boundary value problems

KW - Continuous fields of C-algebras

KW - Groupoids

KW - Index theory

UR - http://www.scopus.com/inward/record.url?scp=68949184855&partnerID=8YFLogxK

U2 - 10.1016/j.jfa.2009.04.019

DO - 10.1016/j.jfa.2009.04.019

M3 - Article

AN - SCOPUS:68949184855

VL - 257

SP - 2645

EP - 2692

JO - Journal of functional analysis

JF - Journal of functional analysis

SN - 0022-1236

IS - 8

ER -

Von denselben Autoren