Details
Originalsprache | Englisch |
---|---|
Seiten (von - bis) | 326-331 |
Seitenumfang | 6 |
Fachzeitschrift | Russian Journal of Mathematical Physics |
Jahrgang | 27 |
Ausgabenummer | 3 |
Publikationsstatus | Veröffentlicht - Juli 2020 |
Abstract
Abstract: Given a compact manifold with boundary, endowed with an isometric action of a discrete group of polynomial growth, we state an index theorem for elliptic elements in the algebra of nonlocal operators generated by the Boutet de Monvel algebra of pseudodifferential boundary value problems on the manifold and the shift operators associated with the group action.
ASJC Scopus Sachgebiete
- Physik und Astronomie (insg.)
- Statistische und nichtlineare Physik
- Mathematik (insg.)
- Mathematische Physik
Zitieren
- Standard
- Harvard
- Apa
- Vancouver
- BibTex
- RIS
in: Russian Journal of Mathematical Physics, Jahrgang 27, Nr. 3, 07.2020, S. 326-331.
Publikation: Beitrag in Fachzeitschrift › Artikel › Forschung › Peer-Review
}
TY - JOUR
T1 - Index of Elliptic Boundary Value Problems Associated with Isometric Group Actions
AU - Boltachev, A. V.
AU - Savin, A. Yu
N1 - Funding Information: This work was supported by the Ministry of Science and Higher Education of the Russian Federation: agreement no. 075-03-2020-223/3 (FSSF-2020-0018).
PY - 2020/7
Y1 - 2020/7
N2 - Abstract: Given a compact manifold with boundary, endowed with an isometric action of a discrete group of polynomial growth, we state an index theorem for elliptic elements in the algebra of nonlocal operators generated by the Boutet de Monvel algebra of pseudodifferential boundary value problems on the manifold and the shift operators associated with the group action.
AB - Abstract: Given a compact manifold with boundary, endowed with an isometric action of a discrete group of polynomial growth, we state an index theorem for elliptic elements in the algebra of nonlocal operators generated by the Boutet de Monvel algebra of pseudodifferential boundary value problems on the manifold and the shift operators associated with the group action.
UR - http://www.scopus.com/inward/record.url?scp=85090127592&partnerID=8YFLogxK
U2 - 10.1134/S1061920820030048
DO - 10.1134/S1061920820030048
M3 - Article
AN - SCOPUS:85090127592
VL - 27
SP - 326
EP - 331
JO - Russian Journal of Mathematical Physics
JF - Russian Journal of Mathematical Physics
SN - 1061-9208
IS - 3
ER -