Details
Originalsprache | Englisch |
---|---|
Titel des Sammelwerks | 2017 IEEE 44th Photovoltaic Specialist Conference, PVSC 2017 |
Herausgeber (Verlag) | Institute of Electrical and Electronics Engineers Inc. |
Seiten | 1-3 |
Seitenumfang | 3 |
ISBN (elektronisch) | 9781509056057 |
Publikationsstatus | Veröffentlicht - 2017 |
Veranstaltung | 44th IEEE Photovoltaic Specialist Conference, PVSC 2017 - Washington, USA / Vereinigte Staaten Dauer: 25 Juni 2017 → 30 Juni 2017 |
Publikationsreihe
Name | 2017 IEEE 44th Photovoltaic Specialist Conference (PVSC) |
---|
Abstract
We fabricate test modules with p-type Passivated Emitter und Rear Cells (PERC) and modules with cells that have a full-area aluminum rear side metallization (Al-BSF) to show advantages of an inherently lower operating temperature of cells with a PERC structure. We find a 4°C lower operating temperature for the PERC module under 1.4 suns if no temperature control is applied, an effect that is hidden under standard testing conditions but is advantageous under real operation conditions. We perform a 3D ray tracing analysis in the spectral range from 300-2500 nm for determining all heat sources in the module and combine this with a 1D finite element method model solving the coupled system of semiconductor, thermal conduction, convection and radiation equations for module temperature and power output. The simulations reveal that the root of the reduced temperature of the PERC modules is a higher reflectivity of the cells' rear side mirror.
ASJC Scopus Sachgebiete
- Energie (insg.)
- Erneuerbare Energien, Nachhaltigkeit und Umwelt
- Ingenieurwesen (insg.)
- Elektrotechnik und Elektronik
- Werkstoffwissenschaften (insg.)
- Elektronische, optische und magnetische Materialien
Ziele für nachhaltige Entwicklung
Zitieren
- Standard
- Harvard
- Apa
- Vancouver
- BibTex
- RIS
2017 IEEE 44th Photovoltaic Specialist Conference, PVSC 2017. Institute of Electrical and Electronics Engineers Inc., 2017. S. 1-3 (2017 IEEE 44th Photovoltaic Specialist Conference (PVSC)).
Publikation: Beitrag in Buch/Bericht/Sammelwerk/Konferenzband › Aufsatz in Konferenzband › Forschung › Peer-Review
}
TY - GEN
T1 - Increased yield of PERC compared to Al-BSF cells due to inherently lower module operating temperatures
AU - Vogt, Malte R.
AU - Schulte-Huxel, Henning
AU - Offer, Matthias
AU - Blankemeyer, Susanne
AU - Witteck, Robert
AU - Kontges, Marc
AU - Bothe, Karsten
AU - Brendel, Rolf
N1 - Publisher Copyright: © 2017 IEEE. Copyright: Copyright 2019 Elsevier B.V., All rights reserved.
PY - 2017
Y1 - 2017
N2 - We fabricate test modules with p-type Passivated Emitter und Rear Cells (PERC) and modules with cells that have a full-area aluminum rear side metallization (Al-BSF) to show advantages of an inherently lower operating temperature of cells with a PERC structure. We find a 4°C lower operating temperature for the PERC module under 1.4 suns if no temperature control is applied, an effect that is hidden under standard testing conditions but is advantageous under real operation conditions. We perform a 3D ray tracing analysis in the spectral range from 300-2500 nm for determining all heat sources in the module and combine this with a 1D finite element method model solving the coupled system of semiconductor, thermal conduction, convection and radiation equations for module temperature and power output. The simulations reveal that the root of the reduced temperature of the PERC modules is a higher reflectivity of the cells' rear side mirror.
AB - We fabricate test modules with p-type Passivated Emitter und Rear Cells (PERC) and modules with cells that have a full-area aluminum rear side metallization (Al-BSF) to show advantages of an inherently lower operating temperature of cells with a PERC structure. We find a 4°C lower operating temperature for the PERC module under 1.4 suns if no temperature control is applied, an effect that is hidden under standard testing conditions but is advantageous under real operation conditions. We perform a 3D ray tracing analysis in the spectral range from 300-2500 nm for determining all heat sources in the module and combine this with a 1D finite element method model solving the coupled system of semiconductor, thermal conduction, convection and radiation equations for module temperature and power output. The simulations reveal that the root of the reduced temperature of the PERC modules is a higher reflectivity of the cells' rear side mirror.
UR - http://www.scopus.com/inward/record.url?scp=85048494252&partnerID=8YFLogxK
U2 - 10.1109/PVSC.2017.8366278
DO - 10.1109/PVSC.2017.8366278
M3 - Conference contribution
AN - SCOPUS:85048494252
T3 - 2017 IEEE 44th Photovoltaic Specialist Conference (PVSC)
SP - 1
EP - 3
BT - 2017 IEEE 44th Photovoltaic Specialist Conference, PVSC 2017
PB - Institute of Electrical and Electronics Engineers Inc.
T2 - 44th IEEE Photovoltaic Specialist Conference, PVSC 2017
Y2 - 25 June 2017 through 30 June 2017
ER -