Improved Production and In Situ Recovery of Sesquiterpene (+)-Zizaene from Metabolically-Engineered E. coli

Publikation: Beitrag in FachzeitschriftArtikelForschungPeer-Review

Autoren

Organisationseinheiten

Forschungs-netzwerk anzeigen

Details

OriginalspracheEnglisch
Aufsatznummer3356
FachzeitschriftMOLECULES
Jahrgang24
Ausgabenummer18
Frühes Online-Datum15 Sept. 2019
PublikationsstatusElektronisch veröffentlicht (E-Pub) - 15 Sept. 2019

Abstract

The sesquiterpene (+)-zizaene is the direct precursor of khusimol, the main fragrant compound of the vetiver essential oil from Chrysopogon zizanioides and used in nearly 20% of men’s fine perfumery. The biotechnological production of such fragrant sesquiterpenes is a promising alternative towards sustainability; nevertheless, product recovery from fermentation is one of the main constraints. In an effort to improve the (+)-zizaene recovery from a metabolically-engineered Escherichia coli, we developed an integrated bioprocess by coupling fermentation and (+)-zizaene recovery using adsorber extractants. Initially, (+)-zizaene volatilization was confirmed from cultivations with no extractants but application of liquid–liquid phase partitioning cultivation (LLPPC) improved (+)-zizaene recovery nearly 4-fold. Furthermore, solid–liquid phase partitioning cultivation (SLPPC) was evaluated by screening polymeric adsorbers, where Diaion HP20 reached the highest recovery. Bioprocess was scaled up to 2 L bioreactors and in situ recovery configurations integrated to fermentation were evaluated. External recovery configuration was performed with an expanded bed adsorption column and improved (+)-zizaene titers 2.5-fold higher than LLPPC. Moreover, internal recovery configuration (IRC) further enhanced the (+)-zizaene titers 2.2-fold, whereas adsorption velocity was determined as critical parameter for recovery efficiency. Consequently, IRC improved the (+)-zizaene titer 8.4-fold and productivity 3-fold from our last report, achieving a (+)-zizaene titer of 211.13 mg L−1 and productivity of 3.2 mg L−1 h−1. This study provides further knowledge for integration of terpene bioprocesses by in situ product recovery, which could be applied for many terpene studies towards the industrialization of fragrant molecules.

ASJC Scopus Sachgebiete

Zitieren

Improved Production and In Situ Recovery of Sesquiterpene (+)-Zizaene from Metabolically-Engineered E. coli. / Aguilar, Francisco; Scheper, Thomas; Beutel, Sascha.
in: MOLECULES, Jahrgang 24, Nr. 18, 3356, 15.09.2019.

Publikation: Beitrag in FachzeitschriftArtikelForschungPeer-Review

Aguilar F, Scheper T, Beutel S. Improved Production and In Situ Recovery of Sesquiterpene (+)-Zizaene from Metabolically-Engineered E. coli. MOLECULES. 2019 Sep 15;24(18):3356. Epub 2019 Sep 15. doi: 10.3390/molecules24183356, 10.15488/8802
Download
@article{cd78a0a0dfd346e7bd6899d57b57e4b8,
title = "Improved Production and In Situ Recovery of Sesquiterpene (+)-Zizaene from Metabolically-Engineered E. coli",
abstract = "The sesquiterpene (+)-zizaene is the direct precursor of khusimol, the main fragrant compound of the vetiver essential oil from Chrysopogon zizanioides and used in nearly 20% of men{\textquoteright}s fine perfumery. The biotechnological production of such fragrant sesquiterpenes is a promising alternative towards sustainability; nevertheless, product recovery from fermentation is one of the main constraints. In an effort to improve the (+)-zizaene recovery from a metabolically-engineered Escherichia coli, we developed an integrated bioprocess by coupling fermentation and (+)-zizaene recovery using adsorber extractants. Initially, (+)-zizaene volatilization was confirmed from cultivations with no extractants but application of liquid–liquid phase partitioning cultivation (LLPPC) improved (+)-zizaene recovery nearly 4-fold. Furthermore, solid–liquid phase partitioning cultivation (SLPPC) was evaluated by screening polymeric adsorbers, where Diaion HP20 reached the highest recovery. Bioprocess was scaled up to 2 L bioreactors and in situ recovery configurations integrated to fermentation were evaluated. External recovery configuration was performed with an expanded bed adsorption column and improved (+)-zizaene titers 2.5-fold higher than LLPPC. Moreover, internal recovery configuration (IRC) further enhanced the (+)-zizaene titers 2.2-fold, whereas adsorption velocity was determined as critical parameter for recovery efficiency. Consequently, IRC improved the (+)-zizaene titer 8.4-fold and productivity 3-fold from our last report, achieving a (+)-zizaene titer of 211.13 mg L−1 and productivity of 3.2 mg L−1 h−1. This study provides further knowledge for integration of terpene bioprocesses by in situ product recovery, which could be applied for many terpene studies towards the industrialization of fragrant molecules.",
keywords = "(+)-zizaene, Chrysopogon zizanioides, Expanded bed adsorption, In situ product recovery, Khusimene, Khusimol, Sesquiterpenes, Terpenes, Vetiver essential oil",
author = "Francisco Aguilar and Thomas Scheper and Sascha Beutel",
note = "Funding information: This research was funded by the PINN program from the Ministry of Science, Technology and Telecommunications of Costa Rica (MICITT), grant PED-058-2015-1, and by the Open Access Fund of the Leibniz Universit{\"a}t Hannover.",
year = "2019",
month = sep,
day = "15",
doi = "10.3390/molecules24183356",
language = "English",
volume = "24",
journal = "MOLECULES",
issn = "1420-3049",
publisher = "Multidisciplinary Digital Publishing Institute",
number = "18",

}

Download

TY - JOUR

T1 - Improved Production and In Situ Recovery of Sesquiterpene (+)-Zizaene from Metabolically-Engineered E. coli

AU - Aguilar, Francisco

AU - Scheper, Thomas

AU - Beutel, Sascha

N1 - Funding information: This research was funded by the PINN program from the Ministry of Science, Technology and Telecommunications of Costa Rica (MICITT), grant PED-058-2015-1, and by the Open Access Fund of the Leibniz Universität Hannover.

PY - 2019/9/15

Y1 - 2019/9/15

N2 - The sesquiterpene (+)-zizaene is the direct precursor of khusimol, the main fragrant compound of the vetiver essential oil from Chrysopogon zizanioides and used in nearly 20% of men’s fine perfumery. The biotechnological production of such fragrant sesquiterpenes is a promising alternative towards sustainability; nevertheless, product recovery from fermentation is one of the main constraints. In an effort to improve the (+)-zizaene recovery from a metabolically-engineered Escherichia coli, we developed an integrated bioprocess by coupling fermentation and (+)-zizaene recovery using adsorber extractants. Initially, (+)-zizaene volatilization was confirmed from cultivations with no extractants but application of liquid–liquid phase partitioning cultivation (LLPPC) improved (+)-zizaene recovery nearly 4-fold. Furthermore, solid–liquid phase partitioning cultivation (SLPPC) was evaluated by screening polymeric adsorbers, where Diaion HP20 reached the highest recovery. Bioprocess was scaled up to 2 L bioreactors and in situ recovery configurations integrated to fermentation were evaluated. External recovery configuration was performed with an expanded bed adsorption column and improved (+)-zizaene titers 2.5-fold higher than LLPPC. Moreover, internal recovery configuration (IRC) further enhanced the (+)-zizaene titers 2.2-fold, whereas adsorption velocity was determined as critical parameter for recovery efficiency. Consequently, IRC improved the (+)-zizaene titer 8.4-fold and productivity 3-fold from our last report, achieving a (+)-zizaene titer of 211.13 mg L−1 and productivity of 3.2 mg L−1 h−1. This study provides further knowledge for integration of terpene bioprocesses by in situ product recovery, which could be applied for many terpene studies towards the industrialization of fragrant molecules.

AB - The sesquiterpene (+)-zizaene is the direct precursor of khusimol, the main fragrant compound of the vetiver essential oil from Chrysopogon zizanioides and used in nearly 20% of men’s fine perfumery. The biotechnological production of such fragrant sesquiterpenes is a promising alternative towards sustainability; nevertheless, product recovery from fermentation is one of the main constraints. In an effort to improve the (+)-zizaene recovery from a metabolically-engineered Escherichia coli, we developed an integrated bioprocess by coupling fermentation and (+)-zizaene recovery using adsorber extractants. Initially, (+)-zizaene volatilization was confirmed from cultivations with no extractants but application of liquid–liquid phase partitioning cultivation (LLPPC) improved (+)-zizaene recovery nearly 4-fold. Furthermore, solid–liquid phase partitioning cultivation (SLPPC) was evaluated by screening polymeric adsorbers, where Diaion HP20 reached the highest recovery. Bioprocess was scaled up to 2 L bioreactors and in situ recovery configurations integrated to fermentation were evaluated. External recovery configuration was performed with an expanded bed adsorption column and improved (+)-zizaene titers 2.5-fold higher than LLPPC. Moreover, internal recovery configuration (IRC) further enhanced the (+)-zizaene titers 2.2-fold, whereas adsorption velocity was determined as critical parameter for recovery efficiency. Consequently, IRC improved the (+)-zizaene titer 8.4-fold and productivity 3-fold from our last report, achieving a (+)-zizaene titer of 211.13 mg L−1 and productivity of 3.2 mg L−1 h−1. This study provides further knowledge for integration of terpene bioprocesses by in situ product recovery, which could be applied for many terpene studies towards the industrialization of fragrant molecules.

KW - (+)-zizaene

KW - Chrysopogon zizanioides

KW - Expanded bed adsorption

KW - In situ product recovery

KW - Khusimene

KW - Khusimol

KW - Sesquiterpenes

KW - Terpenes

KW - Vetiver essential oil

UR - http://www.scopus.com/inward/record.url?scp=85072291038&partnerID=8YFLogxK

U2 - 10.3390/molecules24183356

DO - 10.3390/molecules24183356

M3 - Article

C2 - 31540161

AN - SCOPUS:85072291038

VL - 24

JO - MOLECULES

JF - MOLECULES

SN - 1420-3049

IS - 18

M1 - 3356

ER -

Von denselben Autoren