Loading [MathJax]/extensions/tex2jax.js

Improved Modeling for Hybrid Accelerometers Onboard Future Satellite Gravity Missions

Publikation: KonferenzbeitragPaperForschung

Autorschaft

Externe Organisationen

  • DLR-Institut für Satellitengeodäsie und Inertialsensorik
  • LNE-SYRTE - Observatoire de Paris

Details

OriginalspracheEnglisch
PublikationsstatusVeröffentlicht - 20 Aug. 2022
VeranstaltungCOSPAR: 44th Scientific Assembly - Griechenland, Athen, Griechenland
Dauer: 16 Juli 202224 Juli 2022
https://www.cospar-assembly.org/assembly.php

Konferenz

KonferenzCOSPAR
Land/GebietGriechenland
OrtAthen
Zeitraum16 Juli 202224 Juli 2022
Internetadresse

Abstract

Cold Atom Interferometry (CAI) has proven to be a very efficient technique to achieve high sensitivity for absolute inertial sensing. It is proposed to use CAI accelerometers onboard future generations of satellite gravimetry missions to provide long-term stability and precise measurements of the non-gravitational forces acting on the satellites. This would reduce the overall instrumental errors and improve our knowledge of the Earth gravity field and its change over time. This would allow a better understanding of climate change processes and various geophysical phenomena (e.g. post-glacial rebound). Even though the accuracy and long-term stability of CAI-based accelerometers seem promising, they suffer from long dead times and a comparatively small dynamic range of the sensor. One promising way to handle those drawbacks is to use them in hybrid combination together with a conventional electrostatic accelerometer. We have previously discussed a specific possible solution to employ the measurements of a CAI accelerometer together with a classical accelerometer by applying a Kalman filter Framework which had already shown an improved navigation solution with respect to a reference trajectory (Tennstedt and Schön, 2021). Here, we implement an improved CAI modeling in the simulation to consider the in-flight conditions of a GRACE-like gravimetry mission (e. g. the impact of satellite rotation and gravity gradients) on the CAI measurements. The noise model is also improved to generate more realistic simulated measurements, by considering the impact of different noise sources (e.g. shot noise, detection noise, laser frequency noise and the vibration of the reference mirror). We then perform a closed-loop simulation in which we employ measurements of a CAI accelerometer together with a conventional Inertial Measurement Unit (IMU) using the improved Kalman filter framework and we compare the combined accuracy in the determination of the non-gravitational forces. In addition, we perform simulations using two or three CAI axes. We also study the possibility of having a CAI with a very long interrogation time (>10 seconds) and discuss the challenges and potential improvements. Finally, we compare the recovered gravity field for the various test cases with GRACE solutions. We acknowledge the support by the Deutsche Forschungsgemeinschaft (DFG) under Germany's Excellence Strategy - EXC 2123 "QuantumFrontiers, Project-ID 390837967", the Collaborative Research Center SFB 1464 "TerraQ" -, Project ID 434617780, and the Federal Ministry for Economic Affairs and Energy (BMWi), Project-ID 50RK1957. Reference 1 Tennstedt B, Schön S (2021) Integration of atom interferometers and inertial measurement units to improve navigation performance. In: 28th Saint Petersburg International Conference on Integrated Navigation Systems (ICINS), 31.05.-02.06.2021, St. Petersburg, Russia, IEEE, Piscataway, NJ, https://doi.org/10.23919/ICINS43216.2021.9470809...

Fachgebiet (basierend auf ÖFOS 2012)

  • TECHNISCHE WISSENSCHAFTEN
  • Umweltingenieurwesen, Angewandte Geowissenschaften
  • Geodäsie, Vermessungswesen
  • Satellitengeodäsie
  • NATURWISSENSCHAFTEN
  • Geowissenschaften
  • Geologie, Mineralogie
  • Gravimetrie
  • TECHNISCHE WISSENSCHAFTEN
  • Umweltingenieurwesen, Angewandte Geowissenschaften
  • Geodäsie, Vermessungswesen
  • Geodäsie

Ziele für nachhaltige Entwicklung

Zitieren

Improved Modeling for Hybrid Accelerometers Onboard Future Satellite Gravity Missions. / HosseiniArani, Seyed Alireza; Tennstedt, Benjamin; Schilling, Manuel et al.
2022. Beitrag in COSPAR, Athen, Griechenland.

Publikation: KonferenzbeitragPaperForschung

HosseiniArani, SA, Tennstedt, B, Schilling, M, Knabe, A, Beaufils, Q, Romeshkani, M, Wu, H, Kupriyanov, A, Dos Santos, FP, Schön, S & Müller, J 2022, 'Improved Modeling for Hybrid Accelerometers Onboard Future Satellite Gravity Missions', Beitrag in COSPAR, Athen, Griechenland, 16 Juli 2022 - 24 Juli 2022. <https://elib.dlr.de/192268/>
HosseiniArani, S. A., Tennstedt, B., Schilling, M., Knabe, A., Beaufils, Q., Romeshkani, M., Wu, H., Kupriyanov, A., Dos Santos, F. P., Schön, S., & Müller, J. (2022). Improved Modeling for Hybrid Accelerometers Onboard Future Satellite Gravity Missions. Beitrag in COSPAR, Athen, Griechenland. https://elib.dlr.de/192268/
HosseiniArani SA, Tennstedt B, Schilling M, Knabe A, Beaufils Q, Romeshkani M et al.. Improved Modeling for Hybrid Accelerometers Onboard Future Satellite Gravity Missions. 2022. Beitrag in COSPAR, Athen, Griechenland.
HosseiniArani, Seyed Alireza ; Tennstedt, Benjamin ; Schilling, Manuel et al. / Improved Modeling for Hybrid Accelerometers Onboard Future Satellite Gravity Missions. Beitrag in COSPAR, Athen, Griechenland.
Download
@conference{b9124a96d239423ab57bd22e69cd9c7a,
title = "Improved Modeling for Hybrid Accelerometers Onboard Future Satellite Gravity Missions",
abstract = "Cold Atom Interferometry (CAI) has proven to be a very efficient technique to achieve high sensitivity for absolute inertial sensing. It is proposed to use CAI accelerometers onboard future generations of satellite gravimetry missions to provide long-term stability and precise measurements of the non-gravitational forces acting on the satellites. This would reduce the overall instrumental errors and improve our knowledge of the Earth gravity field and its change over time. This would allow a better understanding of climate change processes and various geophysical phenomena (e.g. post-glacial rebound). Even though the accuracy and long-term stability of CAI-based accelerometers seem promising, they suffer from long dead times and a comparatively small dynamic range of the sensor. One promising way to handle those drawbacks is to use them in hybrid combination together with a conventional electrostatic accelerometer. We have previously discussed a specific possible solution to employ the measurements of a CAI accelerometer together with a classical accelerometer by applying a Kalman filter Framework which had already shown an improved navigation solution with respect to a reference trajectory (Tennstedt and Sch{\"o}n, 2021). Here, we implement an improved CAI modeling in the simulation to consider the in-flight conditions of a GRACE-like gravimetry mission (e. g. the impact of satellite rotation and gravity gradients) on the CAI measurements. The noise model is also improved to generate more realistic simulated measurements, by considering the impact of different noise sources (e.g. shot noise, detection noise, laser frequency noise and the vibration of the reference mirror). We then perform a closed-loop simulation in which we employ measurements of a CAI accelerometer together with a conventional Inertial Measurement Unit (IMU) using the improved Kalman filter framework and we compare the combined accuracy in the determination of the non-gravitational forces. In addition, we perform simulations using two or three CAI axes. We also study the possibility of having a CAI with a very long interrogation time (>10 seconds) and discuss the challenges and potential improvements. Finally, we compare the recovered gravity field for the various test cases with GRACE solutions. We acknowledge the support by the Deutsche Forschungsgemeinschaft (DFG) under Germany's Excellence Strategy - EXC 2123 {"}QuantumFrontiers, Project-ID 390837967{"}, the Collaborative Research Center SFB 1464 {"}TerraQ{"} -, Project ID 434617780, and the Federal Ministry for Economic Affairs and Energy (BMWi), Project-ID 50RK1957. Reference 1 Tennstedt B, Sch{\"o}n S (2021) Integration of atom interferometers and inertial measurement units to improve navigation performance. In: 28th Saint Petersburg International Conference on Integrated Navigation Systems (ICINS), 31.05.-02.06.2021, St. Petersburg, Russia, IEEE, Piscataway, NJ, https://doi.org/10.23919/ICINS43216.2021.9470809...",
author = "HosseiniArani, {Seyed Alireza} and Benjamin Tennstedt and Manuel Schilling and Annike Knabe and Quentin Beaufils and Mohsen Romeshkani and Hu Wu and Alexey Kupriyanov and {Dos Santos}, {Franck Pereira} and Steffen Sch{\"o}n and J{\"u}rgen M{\"u}ller",
year = "2022",
month = aug,
day = "20",
language = "English",
note = "COSPAR ; Conference date: 16-07-2022 Through 24-07-2022",
url = "https://www.cospar-assembly.org/assembly.php",

}

Download

TY - CONF

T1 - Improved Modeling for Hybrid Accelerometers Onboard Future Satellite Gravity Missions

AU - HosseiniArani, Seyed Alireza

AU - Tennstedt, Benjamin

AU - Schilling, Manuel

AU - Knabe, Annike

AU - Beaufils, Quentin

AU - Romeshkani, Mohsen

AU - Wu, Hu

AU - Kupriyanov, Alexey

AU - Dos Santos, Franck Pereira

AU - Schön, Steffen

AU - Müller, Jürgen

PY - 2022/8/20

Y1 - 2022/8/20

N2 - Cold Atom Interferometry (CAI) has proven to be a very efficient technique to achieve high sensitivity for absolute inertial sensing. It is proposed to use CAI accelerometers onboard future generations of satellite gravimetry missions to provide long-term stability and precise measurements of the non-gravitational forces acting on the satellites. This would reduce the overall instrumental errors and improve our knowledge of the Earth gravity field and its change over time. This would allow a better understanding of climate change processes and various geophysical phenomena (e.g. post-glacial rebound). Even though the accuracy and long-term stability of CAI-based accelerometers seem promising, they suffer from long dead times and a comparatively small dynamic range of the sensor. One promising way to handle those drawbacks is to use them in hybrid combination together with a conventional electrostatic accelerometer. We have previously discussed a specific possible solution to employ the measurements of a CAI accelerometer together with a classical accelerometer by applying a Kalman filter Framework which had already shown an improved navigation solution with respect to a reference trajectory (Tennstedt and Schön, 2021). Here, we implement an improved CAI modeling in the simulation to consider the in-flight conditions of a GRACE-like gravimetry mission (e. g. the impact of satellite rotation and gravity gradients) on the CAI measurements. The noise model is also improved to generate more realistic simulated measurements, by considering the impact of different noise sources (e.g. shot noise, detection noise, laser frequency noise and the vibration of the reference mirror). We then perform a closed-loop simulation in which we employ measurements of a CAI accelerometer together with a conventional Inertial Measurement Unit (IMU) using the improved Kalman filter framework and we compare the combined accuracy in the determination of the non-gravitational forces. In addition, we perform simulations using two or three CAI axes. We also study the possibility of having a CAI with a very long interrogation time (>10 seconds) and discuss the challenges and potential improvements. Finally, we compare the recovered gravity field for the various test cases with GRACE solutions. We acknowledge the support by the Deutsche Forschungsgemeinschaft (DFG) under Germany's Excellence Strategy - EXC 2123 "QuantumFrontiers, Project-ID 390837967", the Collaborative Research Center SFB 1464 "TerraQ" -, Project ID 434617780, and the Federal Ministry for Economic Affairs and Energy (BMWi), Project-ID 50RK1957. Reference 1 Tennstedt B, Schön S (2021) Integration of atom interferometers and inertial measurement units to improve navigation performance. In: 28th Saint Petersburg International Conference on Integrated Navigation Systems (ICINS), 31.05.-02.06.2021, St. Petersburg, Russia, IEEE, Piscataway, NJ, https://doi.org/10.23919/ICINS43216.2021.9470809...

AB - Cold Atom Interferometry (CAI) has proven to be a very efficient technique to achieve high sensitivity for absolute inertial sensing. It is proposed to use CAI accelerometers onboard future generations of satellite gravimetry missions to provide long-term stability and precise measurements of the non-gravitational forces acting on the satellites. This would reduce the overall instrumental errors and improve our knowledge of the Earth gravity field and its change over time. This would allow a better understanding of climate change processes and various geophysical phenomena (e.g. post-glacial rebound). Even though the accuracy and long-term stability of CAI-based accelerometers seem promising, they suffer from long dead times and a comparatively small dynamic range of the sensor. One promising way to handle those drawbacks is to use them in hybrid combination together with a conventional electrostatic accelerometer. We have previously discussed a specific possible solution to employ the measurements of a CAI accelerometer together with a classical accelerometer by applying a Kalman filter Framework which had already shown an improved navigation solution with respect to a reference trajectory (Tennstedt and Schön, 2021). Here, we implement an improved CAI modeling in the simulation to consider the in-flight conditions of a GRACE-like gravimetry mission (e. g. the impact of satellite rotation and gravity gradients) on the CAI measurements. The noise model is also improved to generate more realistic simulated measurements, by considering the impact of different noise sources (e.g. shot noise, detection noise, laser frequency noise and the vibration of the reference mirror). We then perform a closed-loop simulation in which we employ measurements of a CAI accelerometer together with a conventional Inertial Measurement Unit (IMU) using the improved Kalman filter framework and we compare the combined accuracy in the determination of the non-gravitational forces. In addition, we perform simulations using two or three CAI axes. We also study the possibility of having a CAI with a very long interrogation time (>10 seconds) and discuss the challenges and potential improvements. Finally, we compare the recovered gravity field for the various test cases with GRACE solutions. We acknowledge the support by the Deutsche Forschungsgemeinschaft (DFG) under Germany's Excellence Strategy - EXC 2123 "QuantumFrontiers, Project-ID 390837967", the Collaborative Research Center SFB 1464 "TerraQ" -, Project ID 434617780, and the Federal Ministry for Economic Affairs and Energy (BMWi), Project-ID 50RK1957. Reference 1 Tennstedt B, Schön S (2021) Integration of atom interferometers and inertial measurement units to improve navigation performance. In: 28th Saint Petersburg International Conference on Integrated Navigation Systems (ICINS), 31.05.-02.06.2021, St. Petersburg, Russia, IEEE, Piscataway, NJ, https://doi.org/10.23919/ICINS43216.2021.9470809...

M3 - Paper

T2 - COSPAR

Y2 - 16 July 2022 through 24 July 2022

ER -

Von denselben Autoren