Improved analysis of GW150914 using a fully spin-precessing waveform model

Publikation: Beitrag in FachzeitschriftArtikelForschungPeer-Review

Autoren

  • The LIGO Scientific Collaboration
  • Virgo Collaboration
  • Karl Danzmann
  • Michele Heurs
  • Harald Lück
  • Daniel Steinmeyer
  • Henning Fedor Cornelius Vahlbruch
  • Benno Willke
  • Holger Wittel
  • Peter Aufmuth
  • A. Bisht
  • Stefan Kaufer
  • Christian Krüger
  • J. D. Lough
  • A. Sawadsky
  • Aditya Singh Mehra

Externe Organisationen

  • California Institute of Technology (Caltech)
  • Louisiana State University
  • American University Washington DC
  • Universita di Salerno
  • Università degli Studi di Napoli Federico II
  • University of Florida
  • Universite de Savoie
  • University of Sannio
  • Max-Planck-Institut für Gravitationsphysik (Albert-Einstein-Institut)
  • Nationaal instituut voor subatomaire fysica (Nikhef)
  • LIGO Laboratory
  • Instituto Nacional de Pesquisas Espaciais
  • Istituto Nazionale di Fisica Nucleare (INFN)
  • Inter-University Centre for Astronomy and Astrophysics India
  • Tata Institute of Fundamental Research (TIFR HYD)
  • University of Wisconsin Milwaukee
  • University of Pisa
  • Sezione di Pisa
  • Australian National University
  • Washington State University Pullman
  • University of Birmingham
  • University of Glasgow
  • Seoul National University
  • University of Melbourne
  • Tsinghua University
  • University of Western Australia
  • Observatoire Côte d'Azur
  • Rochester Institute of Technology
  • Center for Interdisciplinary Exploration and Research in Astrophysics (CIERA)
  • Northwestern University
Forschungs-netzwerk anzeigen

Details

OriginalspracheEnglisch
Aufsatznummer041014
FachzeitschriftPhysical Review X
Jahrgang6
Ausgabenummer4
PublikationsstatusVeröffentlicht - 4 Juni 2016

Abstract

This paper presents updated estimates of source parameters for GW150914, a binary black-hole coalescence event detected by the Laser Interferometer Gravitational-wave Observatory (LIGO) in 2015 [Abbott et al. Phys. Rev. Lett. 116, 061102 (2016).]. Abbott et al. [Phys. Rev. Lett. 116, 241102 (2016).] presented parameter estimation of the source using a 13-dimensional, phenomenological precessing-spin model (precessing IMRPhenom) and an 11-dimensional nonprecessing effective-one body (EOB) model calibrated to numerical-relativity simulations, which forces spin alignment (nonprecessing EOBNR). Here, we present new results that include a 15-dimensional precessingspin waveform model (precessing EOBNR) developed within the EOB formalism. We find good agreement with the parameters estimated previously [Abbott et al. Phys. Rev. Lett. 116, 241102 (2016).], and we quote updated component masses of 35 +5 -3 M· and 30 +5 -3 M· (where errors correspond to 90% symmetric credible intervals). We also present slightly tighter constraints on the dimensionless spin magnitudes of the two black holes, with a primary spin estimate < 0.65 and a secondary spin estimate < 0.75 at 90% probability. Abbott et al. [Phys. Rev. Lett. 116, 241102 (2016).] estimated the systematic parameter-extraction errors due to waveform-model uncertainty by combining the posterior probability densities of precessing IMRPhenom and nonprecessing EOBNR. Here, we find that the two precessing-spin models are in closer agreement, suggesting that these systematic errors are smaller than previously quoted.

ASJC Scopus Sachgebiete

Zitieren

Improved analysis of GW150914 using a fully spin-precessing waveform model. / The LIGO Scientific Collaboration; Virgo Collaboration; Danzmann, Karl et al.
in: Physical Review X, Jahrgang 6, Nr. 4, 041014, 04.06.2016.

Publikation: Beitrag in FachzeitschriftArtikelForschungPeer-Review

The LIGO Scientific Collaboration, Virgo Collaboration, Danzmann, K, Heurs, M, Lück, H, Steinmeyer, D, Vahlbruch, HFC, Willke, B, Wittel, H, Aufmuth, P, Bisht, A, Kaufer, S, Krüger, C, Lough, JD, Sawadsky, A & Singh Mehra, A 2016, 'Improved analysis of GW150914 using a fully spin-precessing waveform model', Physical Review X, Jg. 6, Nr. 4, 041014. https://doi.org/10.1103/PhysRevX.6.041014, https://doi.org/10.15488/1999
The LIGO Scientific Collaboration, Virgo Collaboration, Danzmann, K., Heurs, M., Lück, H., Steinmeyer, D., Vahlbruch, H. F. C., Willke, B., Wittel, H., Aufmuth, P., Bisht, A., Kaufer, S., Krüger, C., Lough, J. D., Sawadsky, A., & Singh Mehra, A. (2016). Improved analysis of GW150914 using a fully spin-precessing waveform model. Physical Review X, 6(4), Artikel 041014. https://doi.org/10.1103/PhysRevX.6.041014, https://doi.org/10.15488/1999
The LIGO Scientific Collaboration, Virgo Collaboration, Danzmann K, Heurs M, Lück H, Steinmeyer D et al. Improved analysis of GW150914 using a fully spin-precessing waveform model. Physical Review X. 2016 Jun 4;6(4):041014. doi: 10.1103/PhysRevX.6.041014, 10.15488/1999
The LIGO Scientific Collaboration ; Virgo Collaboration ; Danzmann, Karl et al. / Improved analysis of GW150914 using a fully spin-precessing waveform model. in: Physical Review X. 2016 ; Jahrgang 6, Nr. 4.
Download
@article{ca5a6b8863d84567857033e370b6a806,
title = "Improved analysis of GW150914 using a fully spin-precessing waveform model",
abstract = "This paper presents updated estimates of source parameters for GW150914, a binary black-hole coalescence event detected by the Laser Interferometer Gravitational-wave Observatory (LIGO) in 2015 [Abbott et al. Phys. Rev. Lett. 116, 061102 (2016).]. Abbott et al. [Phys. Rev. Lett. 116, 241102 (2016).] presented parameter estimation of the source using a 13-dimensional, phenomenological precessing-spin model (precessing IMRPhenom) and an 11-dimensional nonprecessing effective-one body (EOB) model calibrated to numerical-relativity simulations, which forces spin alignment (nonprecessing EOBNR). Here, we present new results that include a 15-dimensional precessingspin waveform model (precessing EOBNR) developed within the EOB formalism. We find good agreement with the parameters estimated previously [Abbott et al. Phys. Rev. Lett. 116, 241102 (2016).], and we quote updated component masses of 35 +5 -3 M· and 30 +5 -3 M· (where errors correspond to 90% symmetric credible intervals). We also present slightly tighter constraints on the dimensionless spin magnitudes of the two black holes, with a primary spin estimate < 0.65 and a secondary spin estimate < 0.75 at 90% probability. Abbott et al. [Phys. Rev. Lett. 116, 241102 (2016).] estimated the systematic parameter-extraction errors due to waveform-model uncertainty by combining the posterior probability densities of precessing IMRPhenom and nonprecessing EOBNR. Here, we find that the two precessing-spin models are in closer agreement, suggesting that these systematic errors are smaller than previously quoted.",
author = "{The LIGO Scientific Collaboration} and {The Virgo Collaboration} and Abbott, {B. P.} and R. Abbott and Abbott, {T. D.} and Abernathy, {M. R.} and F. Acernese and K. Ackley and C. Adams and T. Adams and P. Addesso and Adhikari, {R. X.} and Adya, {V. B.} and C. Affeldt and M. Agathos and K. Agatsuma and N. Aggarwal and Aguiar, {O. D.} and L. Aiello and A. Ain and P. Ajith and Bruce Allen and A. Allocca and Altin, {P. A.} and S. Bose and Brown, {D. A.} and Y. Chen and Danilishin, {S. L.} and Karl Danzmann and Hanke, {M. M.} and J. Hennig and Michele Heurs and Lee, {H. K.} and Harald L{\"u}ck and Nguyen, {T. T.} and J. Schmidt and P. Schmidt and M. Shaltev and Daniel Steinmeyer and L. Sun and Vahlbruch, {Henning Fedor Cornelius} and M. Wang and X. Wang and Y. Wang and Wei, {L. W.} and Benno Willke and Holger Wittel and L. Zhang and Y. Zhang and M. Zhou and Peter Aufmuth and A. Bisht and Stefan Kaufer and Christian Kr{\"u}ger and Lough, {J. D.} and A. Sawadsky and {Singh Mehra}, Aditya",
note = "Copyright: Copyright 2020 Elsevier B.V., All rights reserved.",
year = "2016",
month = jun,
day = "4",
doi = "10.1103/PhysRevX.6.041014",
language = "English",
volume = "6",
journal = "Physical Review X",
issn = "2160-3308",
publisher = "American Physical Society",
number = "4",

}

Download

TY - JOUR

T1 - Improved analysis of GW150914 using a fully spin-precessing waveform model

AU - The LIGO Scientific Collaboration

AU - The Virgo Collaboration

AU - Abbott, B. P.

AU - Abbott, R.

AU - Abbott, T. D.

AU - Abernathy, M. R.

AU - Acernese, F.

AU - Ackley, K.

AU - Adams, C.

AU - Adams, T.

AU - Addesso, P.

AU - Adhikari, R. X.

AU - Adya, V. B.

AU - Affeldt, C.

AU - Agathos, M.

AU - Agatsuma, K.

AU - Aggarwal, N.

AU - Aguiar, O. D.

AU - Aiello, L.

AU - Ain, A.

AU - Ajith, P.

AU - Allen, Bruce

AU - Allocca, A.

AU - Altin, P. A.

AU - Bose, S.

AU - Brown, D. A.

AU - Chen, Y.

AU - Danilishin, S. L.

AU - Danzmann, Karl

AU - Hanke, M. M.

AU - Hennig, J.

AU - Heurs, Michele

AU - Lee, H. K.

AU - Lück, Harald

AU - Nguyen, T. T.

AU - Schmidt, J.

AU - Schmidt, P.

AU - Shaltev, M.

AU - Steinmeyer, Daniel

AU - Sun, L.

AU - Vahlbruch, Henning Fedor Cornelius

AU - Wang, M.

AU - Wang, X.

AU - Wang, Y.

AU - Wei, L. W.

AU - Willke, Benno

AU - Wittel, Holger

AU - Zhang, L.

AU - Zhang, Y.

AU - Zhou, M.

AU - Aufmuth, Peter

AU - Bisht, A.

AU - Kaufer, Stefan

AU - Krüger, Christian

AU - Lough, J. D.

AU - Sawadsky, A.

AU - Singh Mehra, Aditya

N1 - Copyright: Copyright 2020 Elsevier B.V., All rights reserved.

PY - 2016/6/4

Y1 - 2016/6/4

N2 - This paper presents updated estimates of source parameters for GW150914, a binary black-hole coalescence event detected by the Laser Interferometer Gravitational-wave Observatory (LIGO) in 2015 [Abbott et al. Phys. Rev. Lett. 116, 061102 (2016).]. Abbott et al. [Phys. Rev. Lett. 116, 241102 (2016).] presented parameter estimation of the source using a 13-dimensional, phenomenological precessing-spin model (precessing IMRPhenom) and an 11-dimensional nonprecessing effective-one body (EOB) model calibrated to numerical-relativity simulations, which forces spin alignment (nonprecessing EOBNR). Here, we present new results that include a 15-dimensional precessingspin waveform model (precessing EOBNR) developed within the EOB formalism. We find good agreement with the parameters estimated previously [Abbott et al. Phys. Rev. Lett. 116, 241102 (2016).], and we quote updated component masses of 35 +5 -3 M· and 30 +5 -3 M· (where errors correspond to 90% symmetric credible intervals). We also present slightly tighter constraints on the dimensionless spin magnitudes of the two black holes, with a primary spin estimate < 0.65 and a secondary spin estimate < 0.75 at 90% probability. Abbott et al. [Phys. Rev. Lett. 116, 241102 (2016).] estimated the systematic parameter-extraction errors due to waveform-model uncertainty by combining the posterior probability densities of precessing IMRPhenom and nonprecessing EOBNR. Here, we find that the two precessing-spin models are in closer agreement, suggesting that these systematic errors are smaller than previously quoted.

AB - This paper presents updated estimates of source parameters for GW150914, a binary black-hole coalescence event detected by the Laser Interferometer Gravitational-wave Observatory (LIGO) in 2015 [Abbott et al. Phys. Rev. Lett. 116, 061102 (2016).]. Abbott et al. [Phys. Rev. Lett. 116, 241102 (2016).] presented parameter estimation of the source using a 13-dimensional, phenomenological precessing-spin model (precessing IMRPhenom) and an 11-dimensional nonprecessing effective-one body (EOB) model calibrated to numerical-relativity simulations, which forces spin alignment (nonprecessing EOBNR). Here, we present new results that include a 15-dimensional precessingspin waveform model (precessing EOBNR) developed within the EOB formalism. We find good agreement with the parameters estimated previously [Abbott et al. Phys. Rev. Lett. 116, 241102 (2016).], and we quote updated component masses of 35 +5 -3 M· and 30 +5 -3 M· (where errors correspond to 90% symmetric credible intervals). We also present slightly tighter constraints on the dimensionless spin magnitudes of the two black holes, with a primary spin estimate < 0.65 and a secondary spin estimate < 0.75 at 90% probability. Abbott et al. [Phys. Rev. Lett. 116, 241102 (2016).] estimated the systematic parameter-extraction errors due to waveform-model uncertainty by combining the posterior probability densities of precessing IMRPhenom and nonprecessing EOBNR. Here, we find that the two precessing-spin models are in closer agreement, suggesting that these systematic errors are smaller than previously quoted.

UR - http://www.scopus.com/inward/record.url?scp=84995417589&partnerID=8YFLogxK

U2 - 10.1103/PhysRevX.6.041014

DO - 10.1103/PhysRevX.6.041014

M3 - Article

AN - SCOPUS:84995417589

VL - 6

JO - Physical Review X

JF - Physical Review X

SN - 2160-3308

IS - 4

M1 - 041014

ER -

Von denselben Autoren