Details
Originalsprache | Englisch |
---|---|
Aufsatznummer | 780074 |
Fachzeitschrift | Frontiers in Forests and Global Change |
Jahrgang | 4 |
Publikationsstatus | Veröffentlicht - 3 Dez. 2021 |
Extern publiziert | Ja |
Abstract
Soil compaction associated with mechanized wood harvesting can long-lastingly disturb forest soils, ecosystem function, and productivity. Sustainable forest management requires precise and deep knowledge of logging operation impacts on forest soils, which can be attained by meta-analysis studies covering representative forest datasets. We performed a meta-analysis on the impact of logging-associated compaction on forest soils microbial biomass carbon (MBC), bulk density, total porosity, and saturated hydraulic conductivity (Ksat) affected by two management factors (machine weight and passage frequency), two soil factors (texture and depth), and the time passed since the compaction event. Compaction significantly decreased soil MBC by −29.5% only in subsoils (>30 cm). Overall, compaction increased soil bulk density by 8.9% and reduced total porosity and Ksat by −10.1 and −40.2%, respectively. The most striking finding of this meta-analysis is that the greatest disturbance to soil bulk density, total porosity, and Ksat occurs after very frequent (>20) machine passages. This contradicts the existing claims that most damage to forest soils happens after a few machine passages. Furthermore, the analyzed physical variables did not recover to the normal level within a period of 3–6 years. Thus, altering these physical properties can disturb forest ecosystem function and productivity, because they play important roles in water and air supply as well as in biogeochemical cycling in forest ecosystems. To minimize the impact, we recommend the selection of suitable logging machines and decreasing the frequency of machine passages as well as logging out of rainy seasons especially in clayey soils. It is also very important to minimize total skid trail coverage for sustainable forest management.
ASJC Scopus Sachgebiete
- Agrar- und Biowissenschaften (insg.)
- Forstwissenschaften
- Umweltwissenschaften (insg.)
- Ökologie
- Umweltwissenschaften (insg.)
- Globaler Wandel
- Umweltwissenschaften (insg.)
- Natur- und Landschaftsschutz
- Umweltwissenschaften (insg.)
- Umweltwissenschaften (sonstige)
Zitieren
- Standard
- Harvard
- Apa
- Vancouver
- BibTex
- RIS
in: Frontiers in Forests and Global Change, Jahrgang 4, 780074, 03.12.2021.
Publikation: Beitrag in Fachzeitschrift › Übersichtsarbeit › Forschung › Peer-Review
}
TY - JOUR
T1 - Impacts of Logging-Associated Compaction on Forest Soils
T2 - A Meta-Analysis
AU - Nazari, Meisam
AU - Eteghadipour, Mohammad
AU - Zarebanadkouki, Mohsen
AU - Ghorbani, Mohammad
AU - Dippold, Michaela A.
AU - Bilyera, Nataliya
AU - Zamanian, Kazem
N1 - Funding information: The German Federal Environmental Foundation (Deutsche Bundesstiftung Umwelt, DBU) was acknowledged for funding MN. We also thank the National Natural Science Foundation of China (NSFC grant number 42050410320 to KZ) for their support.
PY - 2021/12/3
Y1 - 2021/12/3
N2 - Soil compaction associated with mechanized wood harvesting can long-lastingly disturb forest soils, ecosystem function, and productivity. Sustainable forest management requires precise and deep knowledge of logging operation impacts on forest soils, which can be attained by meta-analysis studies covering representative forest datasets. We performed a meta-analysis on the impact of logging-associated compaction on forest soils microbial biomass carbon (MBC), bulk density, total porosity, and saturated hydraulic conductivity (Ksat) affected by two management factors (machine weight and passage frequency), two soil factors (texture and depth), and the time passed since the compaction event. Compaction significantly decreased soil MBC by −29.5% only in subsoils (>30 cm). Overall, compaction increased soil bulk density by 8.9% and reduced total porosity and Ksat by −10.1 and −40.2%, respectively. The most striking finding of this meta-analysis is that the greatest disturbance to soil bulk density, total porosity, and Ksat occurs after very frequent (>20) machine passages. This contradicts the existing claims that most damage to forest soils happens after a few machine passages. Furthermore, the analyzed physical variables did not recover to the normal level within a period of 3–6 years. Thus, altering these physical properties can disturb forest ecosystem function and productivity, because they play important roles in water and air supply as well as in biogeochemical cycling in forest ecosystems. To minimize the impact, we recommend the selection of suitable logging machines and decreasing the frequency of machine passages as well as logging out of rainy seasons especially in clayey soils. It is also very important to minimize total skid trail coverage for sustainable forest management.
AB - Soil compaction associated with mechanized wood harvesting can long-lastingly disturb forest soils, ecosystem function, and productivity. Sustainable forest management requires precise and deep knowledge of logging operation impacts on forest soils, which can be attained by meta-analysis studies covering representative forest datasets. We performed a meta-analysis on the impact of logging-associated compaction on forest soils microbial biomass carbon (MBC), bulk density, total porosity, and saturated hydraulic conductivity (Ksat) affected by two management factors (machine weight and passage frequency), two soil factors (texture and depth), and the time passed since the compaction event. Compaction significantly decreased soil MBC by −29.5% only in subsoils (>30 cm). Overall, compaction increased soil bulk density by 8.9% and reduced total porosity and Ksat by −10.1 and −40.2%, respectively. The most striking finding of this meta-analysis is that the greatest disturbance to soil bulk density, total porosity, and Ksat occurs after very frequent (>20) machine passages. This contradicts the existing claims that most damage to forest soils happens after a few machine passages. Furthermore, the analyzed physical variables did not recover to the normal level within a period of 3–6 years. Thus, altering these physical properties can disturb forest ecosystem function and productivity, because they play important roles in water and air supply as well as in biogeochemical cycling in forest ecosystems. To minimize the impact, we recommend the selection of suitable logging machines and decreasing the frequency of machine passages as well as logging out of rainy seasons especially in clayey soils. It is also very important to minimize total skid trail coverage for sustainable forest management.
KW - forest soils
KW - logging
KW - microbial biomass carbon
KW - soil compaction
KW - soil physical properties
UR - http://www.scopus.com/inward/record.url?scp=85121448703&partnerID=8YFLogxK
U2 - 10.3389/ffgc.2021.780074
DO - 10.3389/ffgc.2021.780074
M3 - Review article
AN - SCOPUS:85121448703
VL - 4
JO - Frontiers in Forests and Global Change
JF - Frontiers in Forests and Global Change
M1 - 780074
ER -