Details
Originalsprache | Englisch |
---|---|
Aufsatznummer | 063402 |
Fachzeitschrift | Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films |
Jahrgang | 39 |
Ausgabenummer | 6 |
Frühes Online-Datum | 14 Sept. 2021 |
Publikationsstatus | Veröffentlicht - 1 Dez. 2021 |
Abstract
The demand for ion beam sputtering-coated substrates is growing. In order to introduce ion beam sputter deposition (IBSD) technology into new fields of application, the deposition area must be further increased. In this context, the ion species applied for the sputtering process is an important parameter. In the present investigation, an industrial scale IBSD process was characterized with respect to productivity and layer quality by varying the ion species. Ar, Kr, or Xe broad ion beams at an ion energy of 1.8 keV were used, and the evaluation was carried out on the basis of Ta2O5 layers. The dielectric films were produced in a reactive process through the sputtering of a metallic Ta target, and their two-dimensional distributions of the coating rate R, the refractive index and the extinction coefficient were determined over a planar area of 0.9 × 1.0 m2 above the target by the collection method. R served as a measure of productivity, while were quality parameters. Additionally, the layer composition was determined for selected samples on the collector by an electron probe microanalyzer (EPMA). As expected, the different ion-solid interaction mechanisms resulted in significant differences with regard to productivity. Linear scaling of productivity as a function of ion mass was observed. Calculations of the sputtering yield with semiempirical models or SRIM-2013, a binary collision Monte Carlo simulation program, did not confirm the observed linearity. Furthermore, the configuration with the highest productivity, Xe, led to a locally occurring and significant reduction in layer quality, more precisely, an increase of Additionally, the layer compositions determined with EPMA confirmed that ions originating from the ion source were implanted in the thin films during their formation. A detailed evaluation of the angle-resolved energy distributions of the involved particles, simulated with SRIM-2013, was performed. However, the determination of the energies carried away from the target by backscattered ions and sputtered target atoms does not explain the observed degradation mechanism. This concludes that for the realization of future large-area coatings with IBSD, not all relevant mechanisms are yet understood in sufficient detail.
ASJC Scopus Sachgebiete
- Physik und Astronomie (insg.)
- Physik der kondensierten Materie
- Physik und Astronomie (insg.)
- Oberflächen und Grenzflächen
- Werkstoffwissenschaften (insg.)
- Oberflächen, Beschichtungen und Folien
Zitieren
- Standard
- Harvard
- Apa
- Vancouver
- BibTex
- RIS
in: Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, Jahrgang 39, Nr. 6, 063402, 01.12.2021.
Publikation: Beitrag in Fachzeitschrift › Artikel › Forschung › Peer-Review
}
TY - JOUR
T1 - Impact of ion species on ion beam sputtered Ta2O5 layer quality parameters and on corresponding process productivity
T2 - A preinvestigation for large-area coatings
AU - Sakiew, Wjatscheslaw
AU - Schwerdtner, Philippe
AU - Jupé, Marco
AU - Pflug, Andreas
AU - Ristau, Detlev
N1 - Funding Information: This research was partially funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) under Germany’s Excellence Strategy within the Cluster of Excellence PhoenixD (EXC 2122, Project ID No. 390833453). Furthermore, the authors are grateful to the Bundesministerium für Bildung und Forschung (BMBF, German Federal Ministry of Education and Research) for financial support of the research project PluTOplus (Contract No. 13N13207).
PY - 2021/12/1
Y1 - 2021/12/1
N2 - The demand for ion beam sputtering-coated substrates is growing. In order to introduce ion beam sputter deposition (IBSD) technology into new fields of application, the deposition area must be further increased. In this context, the ion species applied for the sputtering process is an important parameter. In the present investigation, an industrial scale IBSD process was characterized with respect to productivity and layer quality by varying the ion species. Ar, Kr, or Xe broad ion beams at an ion energy of 1.8 keV were used, and the evaluation was carried out on the basis of Ta2O5 layers. The dielectric films were produced in a reactive process through the sputtering of a metallic Ta target, and their two-dimensional distributions of the coating rate R, the refractive index and the extinction coefficient were determined over a planar area of 0.9 × 1.0 m2 above the target by the collection method. R served as a measure of productivity, while were quality parameters. Additionally, the layer composition was determined for selected samples on the collector by an electron probe microanalyzer (EPMA). As expected, the different ion-solid interaction mechanisms resulted in significant differences with regard to productivity. Linear scaling of productivity as a function of ion mass was observed. Calculations of the sputtering yield with semiempirical models or SRIM-2013, a binary collision Monte Carlo simulation program, did not confirm the observed linearity. Furthermore, the configuration with the highest productivity, Xe, led to a locally occurring and significant reduction in layer quality, more precisely, an increase of Additionally, the layer compositions determined with EPMA confirmed that ions originating from the ion source were implanted in the thin films during their formation. A detailed evaluation of the angle-resolved energy distributions of the involved particles, simulated with SRIM-2013, was performed. However, the determination of the energies carried away from the target by backscattered ions and sputtered target atoms does not explain the observed degradation mechanism. This concludes that for the realization of future large-area coatings with IBSD, not all relevant mechanisms are yet understood in sufficient detail.
AB - The demand for ion beam sputtering-coated substrates is growing. In order to introduce ion beam sputter deposition (IBSD) technology into new fields of application, the deposition area must be further increased. In this context, the ion species applied for the sputtering process is an important parameter. In the present investigation, an industrial scale IBSD process was characterized with respect to productivity and layer quality by varying the ion species. Ar, Kr, or Xe broad ion beams at an ion energy of 1.8 keV were used, and the evaluation was carried out on the basis of Ta2O5 layers. The dielectric films were produced in a reactive process through the sputtering of a metallic Ta target, and their two-dimensional distributions of the coating rate R, the refractive index and the extinction coefficient were determined over a planar area of 0.9 × 1.0 m2 above the target by the collection method. R served as a measure of productivity, while were quality parameters. Additionally, the layer composition was determined for selected samples on the collector by an electron probe microanalyzer (EPMA). As expected, the different ion-solid interaction mechanisms resulted in significant differences with regard to productivity. Linear scaling of productivity as a function of ion mass was observed. Calculations of the sputtering yield with semiempirical models or SRIM-2013, a binary collision Monte Carlo simulation program, did not confirm the observed linearity. Furthermore, the configuration with the highest productivity, Xe, led to a locally occurring and significant reduction in layer quality, more precisely, an increase of Additionally, the layer compositions determined with EPMA confirmed that ions originating from the ion source were implanted in the thin films during their formation. A detailed evaluation of the angle-resolved energy distributions of the involved particles, simulated with SRIM-2013, was performed. However, the determination of the energies carried away from the target by backscattered ions and sputtered target atoms does not explain the observed degradation mechanism. This concludes that for the realization of future large-area coatings with IBSD, not all relevant mechanisms are yet understood in sufficient detail.
UR - http://www.scopus.com/inward/record.url?scp=85115265908&partnerID=8YFLogxK
U2 - 10.1116/6.0001224
DO - 10.1116/6.0001224
M3 - Article
AN - SCOPUS:85115265908
VL - 39
JO - Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films
JF - Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films
SN - 0734-2101
IS - 6
M1 - 063402
ER -