Details
Originalsprache | Englisch |
---|---|
Titel des Sammelwerks | ASME Turbo Expo 2013 |
Untertitel | Turbine Technical Conference and Exposition, GT 2013 |
Publikationsstatus | Veröffentlicht - 14 Nov. 2013 |
Veranstaltung | ASME Turbo Expo 2013: Turbine Technical Conference and Exposition, GT 2013 - San Antonio, Tx, USA / Vereinigte Staaten Dauer: 3 Juni 2013 → 7 Juni 2013 |
Publikationsreihe
Name | Proceedings of the ASME Turbo Expo |
---|---|
Band | 2 |
Abstract
The inspection of aero engines is a complex and time-consuming process, often requiring the disassembling of the engine or boroscopic examinations. The development of a method to locate and characterize defects and damage at an early stage, without disassembling the engine would accelerate the inspection process. For that purpose, the spatial density distribution pattern of the exhaust jet of aircraft engines may be measured with the Background Oriented Schlieren method (BOS). The hypothesis is that defects in the hot gas path have a noticeable impact on the density pattern of the exhaust jet. To establish the connection between defects and measurable patterns, in the present paper numerical simulations of an aero engine are performed including three potential defects. Non-uniformities resulting from a burner malfunction, the increase of the radial gap between blade tip and casing as well as burned trailing edges are propagated with only small degree of dispersion through the turbine and reach the engine exit. The paper shows that each considered defect results in a different exhaust density pattern.
ASJC Scopus Sachgebiete
- Ingenieurwesen (insg.)
- Allgemeiner Maschinenbau
Zitieren
- Standard
- Harvard
- Apa
- Vancouver
- BibTex
- RIS
ASME Turbo Expo 2013: Turbine Technical Conference and Exposition, GT 2013. 2013. (Proceedings of the ASME Turbo Expo; Band 2).
Publikation: Beitrag in Buch/Bericht/Sammelwerk/Konferenzband › Aufsatz in Konferenzband › Forschung › Peer-Review
}
TY - GEN
T1 - Impact of Defects and Damage in Aircraft Engines on the Exhaust Jet
AU - Adamczuk, Rafael R.
AU - Buske, Clemens
AU - Roehle, Ingo
AU - Hennecke, Christoph
AU - Dinkelacker, Friedrich
AU - Seume, Joerg R.
PY - 2013/11/14
Y1 - 2013/11/14
N2 - The inspection of aero engines is a complex and time-consuming process, often requiring the disassembling of the engine or boroscopic examinations. The development of a method to locate and characterize defects and damage at an early stage, without disassembling the engine would accelerate the inspection process. For that purpose, the spatial density distribution pattern of the exhaust jet of aircraft engines may be measured with the Background Oriented Schlieren method (BOS). The hypothesis is that defects in the hot gas path have a noticeable impact on the density pattern of the exhaust jet. To establish the connection between defects and measurable patterns, in the present paper numerical simulations of an aero engine are performed including three potential defects. Non-uniformities resulting from a burner malfunction, the increase of the radial gap between blade tip and casing as well as burned trailing edges are propagated with only small degree of dispersion through the turbine and reach the engine exit. The paper shows that each considered defect results in a different exhaust density pattern.
AB - The inspection of aero engines is a complex and time-consuming process, often requiring the disassembling of the engine or boroscopic examinations. The development of a method to locate and characterize defects and damage at an early stage, without disassembling the engine would accelerate the inspection process. For that purpose, the spatial density distribution pattern of the exhaust jet of aircraft engines may be measured with the Background Oriented Schlieren method (BOS). The hypothesis is that defects in the hot gas path have a noticeable impact on the density pattern of the exhaust jet. To establish the connection between defects and measurable patterns, in the present paper numerical simulations of an aero engine are performed including three potential defects. Non-uniformities resulting from a burner malfunction, the increase of the radial gap between blade tip and casing as well as burned trailing edges are propagated with only small degree of dispersion through the turbine and reach the engine exit. The paper shows that each considered defect results in a different exhaust density pattern.
UR - http://www.scopus.com/inward/record.url?scp=84890201209&partnerID=8YFLogxK
U2 - 10.1115/GT2013-95079
DO - 10.1115/GT2013-95079
M3 - Conference contribution
AN - SCOPUS:84890201209
SN - 9780791855133
T3 - Proceedings of the ASME Turbo Expo
BT - ASME Turbo Expo 2013
T2 - ASME Turbo Expo 2013: Turbine Technical Conference and Exposition, GT 2013
Y2 - 3 June 2013 through 7 June 2013
ER -