Details
Originalsprache | Englisch |
---|---|
Seiten (von - bis) | 1204-1224 |
Seitenumfang | 21 |
Fachzeitschrift | Proceedings of the Royal Society of Edinburgh Section A: Mathematics |
Jahrgang | 151 |
Ausgabenummer | 4 |
Publikationsstatus | Veröffentlicht - Aug. 2021 |
Extern publiziert | Ja |
Abstract
This paper deals with the logistic Keller-Segel model in bounded two-dimensional domains (with homogeneous Neumann boundary conditions and for parameters χ, κ ∈ ℝ and μ > 0), and shows that any nonnegative initial data (u0, v0) ∈ L1 × W1,2 lead to global solutions that are smooth in.
ASJC Scopus Sachgebiete
- Mathematik (insg.)
- Allgemeine Mathematik
Zitieren
- Standard
- Harvard
- Apa
- Vancouver
- BibTex
- RIS
in: Proceedings of the Royal Society of Edinburgh Section A: Mathematics, Jahrgang 151, Nr. 4, 08.2021, S. 1204-1224.
Publikation: Beitrag in Fachzeitschrift › Artikel › Forschung › Peer-Review
}
TY - JOUR
T1 - Immediate smoothing and global solutions for initial data in L1× W1,2in a Keller-Segel system with logistic terms in 2D
AU - Lankeit, Johannes
N1 - Publisher Copyright: Copyright © The Author(s), 2020. Published by Cambridge University Press on behalf of The Royal Society of Edinburgh.
PY - 2021/8
Y1 - 2021/8
N2 - This paper deals with the logistic Keller-Segel model in bounded two-dimensional domains (with homogeneous Neumann boundary conditions and for parameters χ, κ ∈ ℝ and μ > 0), and shows that any nonnegative initial data (u0, v0) ∈ L1 × W1,2 lead to global solutions that are smooth in.
AB - This paper deals with the logistic Keller-Segel model in bounded two-dimensional domains (with homogeneous Neumann boundary conditions and for parameters χ, κ ∈ ℝ and μ > 0), and shows that any nonnegative initial data (u0, v0) ∈ L1 × W1,2 lead to global solutions that are smooth in.
KW - Chemotaxis
KW - classical solutions
KW - initial data
KW - Keller-Segel
KW - logistic
KW - regularity
UR - http://www.scopus.com/inward/record.url?scp=85094852839&partnerID=8YFLogxK
U2 - 10.1017/prm.2020.55
DO - 10.1017/prm.2020.55
M3 - Article
AN - SCOPUS:85094852839
VL - 151
SP - 1204
EP - 1224
JO - Proceedings of the Royal Society of Edinburgh Section A: Mathematics
JF - Proceedings of the Royal Society of Edinburgh Section A: Mathematics
SN - 0308-2105
IS - 4
ER -