Details
Originalsprache | Englisch |
---|---|
Seiten (von - bis) | 441-443 |
Seitenumfang | 3 |
Fachzeitschrift | Current Directions in Biomedical Engineering |
Jahrgang | 5 |
Ausgabenummer | 1 |
Publikationsstatus | Veröffentlicht - 1 Sept. 2019 |
Abstract
Insertion studies in artificial cochlea models (aCM) are used for the analysis of insertion characteristics of different cochlear implant electrode carrier (EC) designs by measuring insertion forces. These forces are summed forces due to the measuring position which is directly underneath the aCM. The current hypothesis is that they include dynamic friction forces during the insertion process and the forces needed to bend an initially straight EC into the curved form of the aCM. For the purposes of the present study, straight EC substitutes with a constant diameter of 0.7 mm and 20.5 mm intracochlear length were fabricated out of silicone in two versions with different stiffness by varying the number of embedded wires. The EC substitutes were inserted into three different models made of polytetrafluoroethylene (PTFE), each model showing only one constant radius. Three different insertion speeds were used (0.11 / 0.4 / 1.6 mm/s) with an automated insertion test bench. For each parameter combination (curvature, speed, stiffness) twelve insertions were conducted. Measurements included six full insertions and six paused insertions. Paused insertions include a ten second paused time interval without further insertion movement each five millimetres. Measurements showed that dynamic and static components of the measured summed forces can be identified. Dynamic force components increase with increased insertion speeds and also with increased stiffness of the EC substitutes. Both force components decrease with larger radius of the PTFE model. After the insertion, the EC substitutes showed a curved shape, which indicates a plastic deformation of the embedded wires due to the insertion into the curved models. The results can be used for further research on an analytical model to predict the insertions forces of a specific combination of selected parameters as insertion speed and type of EC, combined with given factors such as cochlear geometry.
ASJC Scopus Sachgebiete
- Ingenieurwesen (insg.)
- Biomedizintechnik
Zitieren
- Standard
- Harvard
- Apa
- Vancouver
- BibTex
- RIS
in: Current Directions in Biomedical Engineering, Jahrgang 5, Nr. 1, 01.09.2019, S. 441-443.
Publikation: Beitrag in Fachzeitschrift › Artikel › Forschung › Peer-Review
}
TY - JOUR
T1 - Identification of factors influencing insertion characteristics of cochlear implant electrode carriers
AU - Hügl, Silke
AU - Aldag, Nina
AU - Lenarz, Thomas
AU - Rau, Thomas S.
AU - Becker, Alexander
AU - Glasmacher, Birgit
N1 - Funding Information: The work was funded by the German Research Foundation (DFG) within the Cluster of Excellence EXC 2177/1 "Hearing4all".
PY - 2019/9/1
Y1 - 2019/9/1
N2 - Insertion studies in artificial cochlea models (aCM) are used for the analysis of insertion characteristics of different cochlear implant electrode carrier (EC) designs by measuring insertion forces. These forces are summed forces due to the measuring position which is directly underneath the aCM. The current hypothesis is that they include dynamic friction forces during the insertion process and the forces needed to bend an initially straight EC into the curved form of the aCM. For the purposes of the present study, straight EC substitutes with a constant diameter of 0.7 mm and 20.5 mm intracochlear length were fabricated out of silicone in two versions with different stiffness by varying the number of embedded wires. The EC substitutes were inserted into three different models made of polytetrafluoroethylene (PTFE), each model showing only one constant radius. Three different insertion speeds were used (0.11 / 0.4 / 1.6 mm/s) with an automated insertion test bench. For each parameter combination (curvature, speed, stiffness) twelve insertions were conducted. Measurements included six full insertions and six paused insertions. Paused insertions include a ten second paused time interval without further insertion movement each five millimetres. Measurements showed that dynamic and static components of the measured summed forces can be identified. Dynamic force components increase with increased insertion speeds and also with increased stiffness of the EC substitutes. Both force components decrease with larger radius of the PTFE model. After the insertion, the EC substitutes showed a curved shape, which indicates a plastic deformation of the embedded wires due to the insertion into the curved models. The results can be used for further research on an analytical model to predict the insertions forces of a specific combination of selected parameters as insertion speed and type of EC, combined with given factors such as cochlear geometry.
AB - Insertion studies in artificial cochlea models (aCM) are used for the analysis of insertion characteristics of different cochlear implant electrode carrier (EC) designs by measuring insertion forces. These forces are summed forces due to the measuring position which is directly underneath the aCM. The current hypothesis is that they include dynamic friction forces during the insertion process and the forces needed to bend an initially straight EC into the curved form of the aCM. For the purposes of the present study, straight EC substitutes with a constant diameter of 0.7 mm and 20.5 mm intracochlear length were fabricated out of silicone in two versions with different stiffness by varying the number of embedded wires. The EC substitutes were inserted into three different models made of polytetrafluoroethylene (PTFE), each model showing only one constant radius. Three different insertion speeds were used (0.11 / 0.4 / 1.6 mm/s) with an automated insertion test bench. For each parameter combination (curvature, speed, stiffness) twelve insertions were conducted. Measurements included six full insertions and six paused insertions. Paused insertions include a ten second paused time interval without further insertion movement each five millimetres. Measurements showed that dynamic and static components of the measured summed forces can be identified. Dynamic force components increase with increased insertion speeds and also with increased stiffness of the EC substitutes. Both force components decrease with larger radius of the PTFE model. After the insertion, the EC substitutes showed a curved shape, which indicates a plastic deformation of the embedded wires due to the insertion into the curved models. The results can be used for further research on an analytical model to predict the insertions forces of a specific combination of selected parameters as insertion speed and type of EC, combined with given factors such as cochlear geometry.
KW - cochlear model
KW - insertion force
KW - insertion speed
UR - http://www.scopus.com/inward/record.url?scp=85072694345&partnerID=8YFLogxK
U2 - 10.1515/cdbme-2019-0111
DO - 10.1515/cdbme-2019-0111
M3 - Article
AN - SCOPUS:85072694345
VL - 5
SP - 441
EP - 443
JO - Current Directions in Biomedical Engineering
JF - Current Directions in Biomedical Engineering
IS - 1
ER -