Hyperkähler structure of bow varieties

Publikation: Qualifikations-/StudienabschlussarbeitDissertation

Autorschaft

  • Yannic Borchard

Organisationseinheiten

Forschungs-netzwerk anzeigen

Details

OriginalspracheEnglisch
QualifikationDoctor rerum naturalium
Gradverleihende Hochschule
Betreut von
  • Roger Bielawski, Betreuer*in
Datum der Verleihung des Grades16 Nov. 2022
ErscheinungsortHannover
PublikationsstatusVeröffentlicht - 2023

Abstract

In dieser Dissertation untersuchen wir Cherkis Bogenvarietäten und deren Beschreibung als lineare Flüsse auf der Jacobischen Varietät einer bestimmten Spektralkurve. Wir beschreiben explizit die Bogenvarietät eines deformierten Instanton-Modulraums über der Taub-NUT-Mannigfaltigkeit, das heißt wir beschreiben die Bogenvarietät, die aus einem Pfeil und einem Intervall mit r l-Punkte besteht, und finden eine spektrale Darstellung in Form von Bedingungen an spezielle Divisoren. Wir finden eine asymptotische Metrik für diese Bogenvarietät, indem wir mittels Methoden aus der Twistortheorie einen Modellraum konstruieren und zeigen, dass die zugehörige Metrik asymptotisch nah an der eigentlichen Metrik der Bogenvarietät liegt.

Zitieren

Hyperkähler structure of bow varieties. / Borchard, Yannic.
Hannover, 2023. 107 S.

Publikation: Qualifikations-/StudienabschlussarbeitDissertation

Borchard, Y 2023, 'Hyperkähler structure of bow varieties', Doctor rerum naturalium, Gottfried Wilhelm Leibniz Universität Hannover, Hannover. https://doi.org/10.15488/13674
Borchard, Y. (2023). Hyperkähler structure of bow varieties. [Dissertation, Gottfried Wilhelm Leibniz Universität Hannover]. https://doi.org/10.15488/13674
Borchard Y. Hyperkähler structure of bow varieties. Hannover, 2023. 107 S. doi: 10.15488/13674
Borchard, Yannic. / Hyperkähler structure of bow varieties. Hannover, 2023. 107 S.
Download
@phdthesis{011ed5f2c213418983400aba6476b473,
title = "Hyperk{\"a}hler structure of bow varieties",
abstract = "In this thesis we study Cherkis bow varieties and its description in terms of linear flows on the Jacobian variety of certain spectral curve. We describe explicitly the bow variety of a deformed instanton moduli space over Taub-NUT, i.e. the bow variety consisting of one arrow and interval with r l-points, and find a spectral description in terms of conditions on certain divisors. We find an asymptotic metric for the bow variety by constructing a model space using twistor methods and showing that the corresponding metric is asymptotically close to the one of the bow variety.",
author = "Yannic Borchard",
note = "Doctoral thesis",
year = "2023",
doi = "10.15488/13674",
language = "English",
school = "Leibniz University Hannover",

}

Download

TY - BOOK

T1 - Hyperkähler structure of bow varieties

AU - Borchard, Yannic

N1 - Doctoral thesis

PY - 2023

Y1 - 2023

N2 - In this thesis we study Cherkis bow varieties and its description in terms of linear flows on the Jacobian variety of certain spectral curve. We describe explicitly the bow variety of a deformed instanton moduli space over Taub-NUT, i.e. the bow variety consisting of one arrow and interval with r l-points, and find a spectral description in terms of conditions on certain divisors. We find an asymptotic metric for the bow variety by constructing a model space using twistor methods and showing that the corresponding metric is asymptotically close to the one of the bow variety.

AB - In this thesis we study Cherkis bow varieties and its description in terms of linear flows on the Jacobian variety of certain spectral curve. We describe explicitly the bow variety of a deformed instanton moduli space over Taub-NUT, i.e. the bow variety consisting of one arrow and interval with r l-points, and find a spectral description in terms of conditions on certain divisors. We find an asymptotic metric for the bow variety by constructing a model space using twistor methods and showing that the corresponding metric is asymptotically close to the one of the bow variety.

U2 - 10.15488/13674

DO - 10.15488/13674

M3 - Doctoral thesis

CY - Hannover

ER -