Hyperkähler manifolds of curves and l-hypercomplex structures

Publikation: Qualifikations-/StudienabschlussarbeitDissertation

Autoren

  • Niccolò Lora Lamia Donin

Organisationseinheiten

Forschungs-netzwerk anzeigen

Details

OriginalspracheEnglisch
QualifikationDoctor rerum naturalium
Gradverleihende Hochschule
Betreut von
  • Roger Bielawski, Betreuer*in
Datum der Verleihung des Grades14 Sept. 2018
ErscheinungsortHannover
PublikationsstatusVeröffentlicht - 2018

Abstract

In this work we focus our attention on the description of hyperkähler manifolds that arise as moduli spaces of curves inside twistor spaces that admit a fibration on the tangent bundle to the Riemann sphere. We characterize them completely and show a link with the theory of holomorphic completely integrable systems.

Zitieren

Hyperkähler manifolds of curves and l-hypercomplex structures. / Lora Lamia Donin, Niccolò.
Hannover, 2018. 73 S.

Publikation: Qualifikations-/StudienabschlussarbeitDissertation

Lora Lamia Donin, N 2018, 'Hyperkähler manifolds of curves and l-hypercomplex structures', Doctor rerum naturalium, Gottfried Wilhelm Leibniz Universität Hannover, Hannover. https://doi.org/10.15488/3873
Lora Lamia Donin, N. (2018). Hyperkähler manifolds of curves and l-hypercomplex structures. [Dissertation, Gottfried Wilhelm Leibniz Universität Hannover]. https://doi.org/10.15488/3873
Lora Lamia Donin N. Hyperkähler manifolds of curves and l-hypercomplex structures. Hannover, 2018. 73 S. doi: 10.15488/3873
Lora Lamia Donin, Niccolò. / Hyperkähler manifolds of curves and l-hypercomplex structures. Hannover, 2018. 73 S.
Download
@phdthesis{fc37dbb3b6114a02a08cfb2eabab1405,
title = "Hyperk{\"a}hler manifolds of curves and l-hypercomplex structures",
abstract = "In this work we focus our attention on the description of hyperk{\"a}hler manifolds that arise as moduli spaces of curves inside twistor spaces that admit a fibration on the tangent bundle to the Riemann sphere. We characterize them completely and show a link with the theory of holomorphic completely integrable systems.",
author = "{Lora Lamia Donin}, Niccol{\`o}",
note = "Doctoral thesis",
year = "2018",
doi = "10.15488/3873",
language = "English",
school = "Leibniz University Hannover",

}

Download

TY - BOOK

T1 - Hyperkähler manifolds of curves and l-hypercomplex structures

AU - Lora Lamia Donin, Niccolò

N1 - Doctoral thesis

PY - 2018

Y1 - 2018

N2 - In this work we focus our attention on the description of hyperkähler manifolds that arise as moduli spaces of curves inside twistor spaces that admit a fibration on the tangent bundle to the Riemann sphere. We characterize them completely and show a link with the theory of holomorphic completely integrable systems.

AB - In this work we focus our attention on the description of hyperkähler manifolds that arise as moduli spaces of curves inside twistor spaces that admit a fibration on the tangent bundle to the Riemann sphere. We characterize them completely and show a link with the theory of holomorphic completely integrable systems.

U2 - 10.15488/3873

DO - 10.15488/3873

M3 - Doctoral thesis

CY - Hannover

ER -