Hyperkähler geometry of rational curves in twistor spaces

Publikation: Beitrag in FachzeitschriftArtikelForschungPeer-Review

Autoren

  • Roger Bielawski
  • Naizhen Zhang

Organisationseinheiten

Forschungs-netzwerk anzeigen

Details

OriginalspracheEnglisch
Seiten (von - bis)345-354
Seitenumfang10
FachzeitschriftComplex Manifolds
Jahrgang9
Ausgabenummer1
PublikationsstatusVeröffentlicht - 30 Dez. 2022

Abstract

We investigate the pseudo-hyperkähler geometry of higher degree rational curves in the twistor space of a hyperkähler 4-manifold.

ASJC Scopus Sachgebiete

Zitieren

Hyperkähler geometry of rational curves in twistor spaces. / Bielawski, Roger; Zhang, Naizhen.
in: Complex Manifolds, Jahrgang 9, Nr. 1, 30.12.2022, S. 345-354.

Publikation: Beitrag in FachzeitschriftArtikelForschungPeer-Review

Bielawski R, Zhang N. Hyperkähler geometry of rational curves in twistor spaces. Complex Manifolds. 2022 Dez 30;9(1):345-354. doi: 10.48550/arXiv.2111.15457, 10.1515/coma-2021-0145
Bielawski, Roger ; Zhang, Naizhen. / Hyperkähler geometry of rational curves in twistor spaces. in: Complex Manifolds. 2022 ; Jahrgang 9, Nr. 1. S. 345-354.
Download
@article{f0fdac20bc1a4acb8999dbe4d0fe4b44,
title = "Hyperk{\"a}hler geometry of rational curves in twistor spaces",
abstract = "We investigate the pseudo-hyperk{\"a}hler geometry of higher degree rational curves in the twistor space of a hyperk{\"a}hler 4-manifold.",
keywords = "Douady spaces, hypercomplex, hyperk{\"a}hler, twistor spaces",
author = "Roger Bielawski and Naizhen Zhang",
year = "2022",
month = dec,
day = "30",
doi = "10.48550/arXiv.2111.15457",
language = "English",
volume = "9",
pages = "345--354",
number = "1",

}

Download

TY - JOUR

T1 - Hyperkähler geometry of rational curves in twistor spaces

AU - Bielawski, Roger

AU - Zhang, Naizhen

PY - 2022/12/30

Y1 - 2022/12/30

N2 - We investigate the pseudo-hyperkähler geometry of higher degree rational curves in the twistor space of a hyperkähler 4-manifold.

AB - We investigate the pseudo-hyperkähler geometry of higher degree rational curves in the twistor space of a hyperkähler 4-manifold.

KW - Douady spaces

KW - hypercomplex

KW - hyperkähler

KW - twistor spaces

UR - http://www.scopus.com/inward/record.url?scp=85146001985&partnerID=8YFLogxK

U2 - 10.48550/arXiv.2111.15457

DO - 10.48550/arXiv.2111.15457

M3 - Article

AN - SCOPUS:85146001985

VL - 9

SP - 345

EP - 354

JO - Complex Manifolds

JF - Complex Manifolds

SN - 2300-7443

IS - 1

ER -