Hyperfine dependent atom-molecule loss analyzed by the analytic solution of few-body loss equations

Publikation: Beitrag in FachzeitschriftArtikelForschungPeer-Review

Autoren

  • Kai K. Voges
  • Philipp Gersema
  • Torsten Hartmann
  • Silke Ospelkaus-Schwarzer
  • Alessandro Zenesini

Externe Organisationen

  • Trento Institute for Fundamental Physics and Application (TIFPA)
Forschungs-netzwerk anzeigen

Details

OriginalspracheEnglisch
Aufsatznummer023184
Seitenumfang6
FachzeitschriftPhysical Review Research
Jahrgang4
Ausgabenummer2
Frühes Online-Datum6 Juni 2022
PublikationsstatusVeröffentlicht - Juni 2022

Abstract

We prepare mixtures of ultracold \(^{39}\)K atoms in various hyperfine spin states and \(^{23}\)Na\(^{39}\)K molecules in an optical dipole trap at a fixed magnetic field and study inelastic two-body atom-molecule collisions. We observe atom-molecule loss that is hyperfine dependent with a two-body loss rate far below the universal limit. We analyze the two-body loss dynamics based on the derivation of general and easy applicable analytic solutions for the differential equations describing the loss of an arbitrary number \(\gamma\) of particles in a single collisional event.

ASJC Scopus Sachgebiete

Zitieren

Hyperfine dependent atom-molecule loss analyzed by the analytic solution of few-body loss equations. / Voges, Kai K.; Gersema, Philipp; Hartmann, Torsten et al.
in: Physical Review Research, Jahrgang 4, Nr. 2, 023184, 06.2022.

Publikation: Beitrag in FachzeitschriftArtikelForschungPeer-Review

Voges, KK, Gersema, P, Hartmann, T, Ospelkaus-Schwarzer, S & Zenesini, A 2022, 'Hyperfine dependent atom-molecule loss analyzed by the analytic solution of few-body loss equations', Physical Review Research, Jg. 4, Nr. 2, 023184. https://doi.org/10.48550/arXiv.2109.03605, https://doi.org/10.1103/PhysRevResearch.4.023184
Voges, K. K., Gersema, P., Hartmann, T., Ospelkaus-Schwarzer, S., & Zenesini, A. (2022). Hyperfine dependent atom-molecule loss analyzed by the analytic solution of few-body loss equations. Physical Review Research, 4(2), Artikel 023184. https://doi.org/10.48550/arXiv.2109.03605, https://doi.org/10.1103/PhysRevResearch.4.023184
Voges KK, Gersema P, Hartmann T, Ospelkaus-Schwarzer S, Zenesini A. Hyperfine dependent atom-molecule loss analyzed by the analytic solution of few-body loss equations. Physical Review Research. 2022 Jun;4(2):023184. Epub 2022 Jun 6. doi: 10.48550/arXiv.2109.03605, 10.1103/PhysRevResearch.4.023184
Voges, Kai K. ; Gersema, Philipp ; Hartmann, Torsten et al. / Hyperfine dependent atom-molecule loss analyzed by the analytic solution of few-body loss equations. in: Physical Review Research. 2022 ; Jahrgang 4, Nr. 2.
Download
@article{14e1e6fba7994244bf9b5424fda6502a,
title = "Hyperfine dependent atom-molecule loss analyzed by the analytic solution of few-body loss equations",
abstract = " We prepare mixtures of ultracold \(^{39}\)K atoms in various hyperfine spin states and \(^{23}\)Na\(^{39}\)K molecules in an optical dipole trap at a fixed magnetic field and study inelastic two-body atom-molecule collisions. We observe atom-molecule loss that is hyperfine dependent with a two-body loss rate far below the universal limit. We analyze the two-body loss dynamics based on the derivation of general and easy applicable analytic solutions for the differential equations describing the loss of an arbitrary number \(\gamma\) of particles in a single collisional event. ",
keywords = "physics.atom-ph, cond-mat.quant-gas",
author = "Voges, {Kai K.} and Philipp Gersema and Torsten Hartmann and Silke Ospelkaus-Schwarzer and Alessandro Zenesini",
note = "Funding Information: We thank Goulven Qu{\'e}m{\'e}ner for enlightening comments and Jeremy Hutson and Matthew Frye for insightful concep- tions. We gratefully acknowledge financial support from the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) through CRC 1227 DQ-mat Project No. A03, FOR2247 Project E5 and under Germany{\textquoteright}s Excellence Strat- egy - EXC-2123 Quantum Frontiers 390837967. P.G. thanks the Deutsche Forschungsgemeinschaft for financial support through Research Training Group 1991. A.Z. thanks Provincia Autonoma di Trento for financial support.",
year = "2022",
month = jun,
doi = "10.48550/arXiv.2109.03605",
language = "English",
volume = "4",
number = "2",

}

Download

TY - JOUR

T1 - Hyperfine dependent atom-molecule loss analyzed by the analytic solution of few-body loss equations

AU - Voges, Kai K.

AU - Gersema, Philipp

AU - Hartmann, Torsten

AU - Ospelkaus-Schwarzer, Silke

AU - Zenesini, Alessandro

N1 - Funding Information: We thank Goulven Quéméner for enlightening comments and Jeremy Hutson and Matthew Frye for insightful concep- tions. We gratefully acknowledge financial support from the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) through CRC 1227 DQ-mat Project No. A03, FOR2247 Project E5 and under Germany’s Excellence Strat- egy - EXC-2123 Quantum Frontiers 390837967. P.G. thanks the Deutsche Forschungsgemeinschaft for financial support through Research Training Group 1991. A.Z. thanks Provincia Autonoma di Trento for financial support.

PY - 2022/6

Y1 - 2022/6

N2 - We prepare mixtures of ultracold \(^{39}\)K atoms in various hyperfine spin states and \(^{23}\)Na\(^{39}\)K molecules in an optical dipole trap at a fixed magnetic field and study inelastic two-body atom-molecule collisions. We observe atom-molecule loss that is hyperfine dependent with a two-body loss rate far below the universal limit. We analyze the two-body loss dynamics based on the derivation of general and easy applicable analytic solutions for the differential equations describing the loss of an arbitrary number \(\gamma\) of particles in a single collisional event.

AB - We prepare mixtures of ultracold \(^{39}\)K atoms in various hyperfine spin states and \(^{23}\)Na\(^{39}\)K molecules in an optical dipole trap at a fixed magnetic field and study inelastic two-body atom-molecule collisions. We observe atom-molecule loss that is hyperfine dependent with a two-body loss rate far below the universal limit. We analyze the two-body loss dynamics based on the derivation of general and easy applicable analytic solutions for the differential equations describing the loss of an arbitrary number \(\gamma\) of particles in a single collisional event.

KW - physics.atom-ph

KW - cond-mat.quant-gas

UR - http://www.scopus.com/inward/record.url?scp=85134371967&partnerID=8YFLogxK

U2 - 10.48550/arXiv.2109.03605

DO - 10.48550/arXiv.2109.03605

M3 - Article

VL - 4

JO - Physical Review Research

JF - Physical Review Research

SN - 2643-1564

IS - 2

M1 - 023184

ER -